{"title":"Deletion of bZIP Transcription Factor <i>PratfA</i> Reveals Specialized Metabolites Potentially Regulating Stress Response in <i>Penicillium raistrickii</i>.","authors":"Anxin Zhang, Shu Zhang, Xinran Xu, Wen-Bing Yin","doi":"10.3390/jof11010072","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal secondary metabolism (SM) is highly correlated with physiological processes that are typically regulated by pleiotropic regulators. In this study, we purposefully altered <i>PratfA</i>, a crucial regulator associated with oxidative stress in <i>Penicillium raistrickii</i> CGMCC 3.1066. After the knockout of <i>PratfA</i>, a novel polyketide (PK) raistrilide A (<b>1</b>) and the known nonribosomal peptide (NRP) tunicoidine (<b>2</b>) subsequently disappeared. Notably, compound <b>1</b> is a rare octaketone derivative and contains two unsubstituted <i>cis</i>-double bonds, demonstrating its unique biosynthetic mechanism. The knockout of <i>PratfA</i> resulted in the disappearance of <b>1</b>-<b>2</b> and greatly increased the susceptibility of Δ<i>PratfA</i> mutant strain to oxidative stress, rendering it nearly impossible to survive in such environments. At present, the <i>OE⸬PratfA</i> strain showed no phenotypic or oxidative stress sensitivity differences compared to the wild-type strain. Our findings highlight that the oxidative-stress-related transcription factor (TF) <i>PratfA</i> influences SM pathways in <i>P</i>. <i>raistrickii</i>. The manipulation of regulatory factors can guide the discovery of novel natural products (NPs).</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766536/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11010072","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fungal secondary metabolism (SM) is highly correlated with physiological processes that are typically regulated by pleiotropic regulators. In this study, we purposefully altered PratfA, a crucial regulator associated with oxidative stress in Penicillium raistrickii CGMCC 3.1066. After the knockout of PratfA, a novel polyketide (PK) raistrilide A (1) and the known nonribosomal peptide (NRP) tunicoidine (2) subsequently disappeared. Notably, compound 1 is a rare octaketone derivative and contains two unsubstituted cis-double bonds, demonstrating its unique biosynthetic mechanism. The knockout of PratfA resulted in the disappearance of 1-2 and greatly increased the susceptibility of ΔPratfA mutant strain to oxidative stress, rendering it nearly impossible to survive in such environments. At present, the OE⸬PratfA strain showed no phenotypic or oxidative stress sensitivity differences compared to the wild-type strain. Our findings highlight that the oxidative-stress-related transcription factor (TF) PratfA influences SM pathways in P. raistrickii. The manipulation of regulatory factors can guide the discovery of novel natural products (NPs).
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.