Simulation of Flow Around a Finite Rectangular Prism: Influence of Mesh, Model, and Subgrid Length Scale.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2025-01-13 DOI:10.3390/e27010065
Xutong Zhang, Maxime Savoie, Mark K Quinn, Ben Parslew, Alistair Revell
{"title":"Simulation of Flow Around a Finite Rectangular Prism: Influence of Mesh, Model, and Subgrid Length Scale.","authors":"Xutong Zhang, Maxime Savoie, Mark K Quinn, Ben Parslew, Alistair Revell","doi":"10.3390/e27010065","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the flow field around a finite rectangular prism using both experimental and computational methods, with a particular focus on the influence of the turbulence approach adopted, the mesh resolution employed, and different subgrid length scales. Ten turbulence modelling and simulation approaches, including both 'scale-modelling' Reynolds-Averaged Navier-Stokes (RANS) models and 'scale-resolving' Delayed Detached Eddy Simulation (DDES), were tested across six different mesh resolutions. A case with sharp corners allows the location of the flow separation to be fixed, which facilitates a focus on the separated flow region and, in this instance, the three-dimensional interaction of three such regions. The case, therefore, readily enables an assessment of the 'grey-area' issue, whereby some DDES methods demonstrate delayed activation of the scale-resolving model, impacting the size of flow recirculation. Experimental measurements were shown to agree well with reference data for the same geometry, after which particle image velocimetry (PIV) data were gathered to extend the reference dataset. Numerical predictions from the RANS models were generally quite reasonable but did not show improvement with further refinement, as one would expect, whereas DDES clearly demonstrated continuous improvement in predictive accuracy with progressive mesh refinement. The shear-layer-adapted (SLA) subgrid length scale (ΔSLA) displayed consistently superior performance compared to the more widely used length scale based on local cell volume, particularly for moderate mesh resolutions commonly employed in industrial settings with limited resources. In general, front-body separation and reattachment exhibited greater sensitivity to mesh refinement than wake resolution. Finally, in order to correlate the observed DDES mesh requirements with the observations from the converged RANS solutions, an approximation for the Taylor microscale was explored as a potential tool for mesh sizing.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27010065","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the flow field around a finite rectangular prism using both experimental and computational methods, with a particular focus on the influence of the turbulence approach adopted, the mesh resolution employed, and different subgrid length scales. Ten turbulence modelling and simulation approaches, including both 'scale-modelling' Reynolds-Averaged Navier-Stokes (RANS) models and 'scale-resolving' Delayed Detached Eddy Simulation (DDES), were tested across six different mesh resolutions. A case with sharp corners allows the location of the flow separation to be fixed, which facilitates a focus on the separated flow region and, in this instance, the three-dimensional interaction of three such regions. The case, therefore, readily enables an assessment of the 'grey-area' issue, whereby some DDES methods demonstrate delayed activation of the scale-resolving model, impacting the size of flow recirculation. Experimental measurements were shown to agree well with reference data for the same geometry, after which particle image velocimetry (PIV) data were gathered to extend the reference dataset. Numerical predictions from the RANS models were generally quite reasonable but did not show improvement with further refinement, as one would expect, whereas DDES clearly demonstrated continuous improvement in predictive accuracy with progressive mesh refinement. The shear-layer-adapted (SLA) subgrid length scale (ΔSLA) displayed consistently superior performance compared to the more widely used length scale based on local cell volume, particularly for moderate mesh resolutions commonly employed in industrial settings with limited resources. In general, front-body separation and reattachment exhibited greater sensitivity to mesh refinement than wake resolution. Finally, in order to correlate the observed DDES mesh requirements with the observations from the converged RANS solutions, an approximation for the Taylor microscale was explored as a potential tool for mesh sizing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
A Resource-Efficient Multi-Entropy Fusion Method and Its Application for EEG-Based Emotion Recognition. Discontinuous Structural Transitions in Fluids with Competing Interactions. Maximizing Free Energy Gain. Nonadditive Entropies and Nonextensive Statistical Mechanics. Novel Ensemble Approach with Incremental Information Level and Improved Evidence Theory for Attribute Reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1