Bioactive Steroids with Structural Diversity from the South China Sea Soft Coral Lobophytum sp. and Sponge Xestospongia sp.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL Marine Drugs Pub Date : 2025-01-13 DOI:10.3390/md23010036
Lin-Mao Ke, Zi-Ru Zhang, Song-Wei Li, Yan-Bo Zeng, Ming-Zhi Su, Yue-Wei Guo
{"title":"Bioactive Steroids with Structural Diversity from the South China Sea Soft Coral <i>Lobophytum</i> sp. and Sponge <i>Xestospongia</i> sp.","authors":"Lin-Mao Ke, Zi-Ru Zhang, Song-Wei Li, Yan-Bo Zeng, Ming-Zhi Su, Yue-Wei Guo","doi":"10.3390/md23010036","DOIUrl":null,"url":null,"abstract":"<p><p>A chemical investigation of the soft coral <i>Lobophytum</i> sp. and the sponge <i>Xestospongia</i> sp. from the South China Sea led to the isolation of five steroids, including two new compounds (<b>1</b> and <b>4</b>) and one known natural product (<b>3</b>). Compounds <b>1</b>-<b>3</b> were derived from the soft coral <i>Lobophytum</i> sp., while <b>4</b> and <b>5</b> were obtained from the sponge <i>Xestospongia</i> sp. The structures of these compounds were determined by extensive spectroscopic analysis, the time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD) calculation method, and comparison with the spectral data previously reported in the literature. The antibacterial and anti-inflammatory activities of isolated compounds were evaluated in vitro. Compounds <b>1</b>-<b>3</b>, <b>4</b>, and <b>5</b> exhibited weak antibacterial activity against vancomycin-resistant <i>Enterococcus faecium</i> G1, <i>Streptococcus parauberis</i> KSP28, <i>Photobacterium damselae</i> FP2244, <i>Lactococcus garvieae</i> FP5245, and <i>Pseudomonas aeruginosa</i> ZJ028. Moreover, compound <b>3</b> showed significant anti-inflammatory activity by inhibiting lipopolysaccharide (LPS)-induced NO production in RAW 264.7 cells, with an IC<sub>50</sub> value of 13.48 μM.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23010036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

A chemical investigation of the soft coral Lobophytum sp. and the sponge Xestospongia sp. from the South China Sea led to the isolation of five steroids, including two new compounds (1 and 4) and one known natural product (3). Compounds 1-3 were derived from the soft coral Lobophytum sp., while 4 and 5 were obtained from the sponge Xestospongia sp. The structures of these compounds were determined by extensive spectroscopic analysis, the time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD) calculation method, and comparison with the spectral data previously reported in the literature. The antibacterial and anti-inflammatory activities of isolated compounds were evaluated in vitro. Compounds 1-3, 4, and 5 exhibited weak antibacterial activity against vancomycin-resistant Enterococcus faecium G1, Streptococcus parauberis KSP28, Photobacterium damselae FP2244, Lactococcus garvieae FP5245, and Pseudomonas aeruginosa ZJ028. Moreover, compound 3 showed significant anti-inflammatory activity by inhibiting lipopolysaccharide (LPS)-induced NO production in RAW 264.7 cells, with an IC50 value of 13.48 μM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
期刊最新文献
Deep-Sea-Derived Isobisvertinol Targets TLR4 to Exhibit Neuroprotective Activity via Anti-Inflammatory and Ferroptosis-Inhibitory Effects. Ishophloroglucin A Isolated from Ishige okamurae Protects Glomerular Cells from Methylglyoxal-Induced Diacarbonyl Stress and Inhibits the Pathogenesis of Diabetic Nephropathy. Metabolic Blockade-Based Genome Mining of Malbranchea circinata SDU050: Discovery of Diverse Secondary Metabolites. Methyl 3-Bromo-4,5-dihydroxybenzoate Attenuates Inflammatory Bowel Disease by Regulating TLR/NF-κB Pathways. Antimicrobial Activities of Polysaccharide-Rich Extracts from the Irish Seaweed Alaria esculenta, Generated Using Green and Conventional Extraction Technologies, Against Foodborne Pathogens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1