Food-Induced Adverse Reactions: A Review of Physiological Food Quality Control, Mucosal Defense Mechanisms, and Gastrointestinal Physiology.

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Toxics Pub Date : 2025-01-16 DOI:10.3390/toxics13010061
Dongdong Guo, Chang Liu, Hongkang Zhu, Yuliang Cheng, Xiang Huo, Yahui Guo, He Qian
{"title":"Food-Induced Adverse Reactions: A Review of Physiological Food Quality Control, Mucosal Defense Mechanisms, and Gastrointestinal Physiology.","authors":"Dongdong Guo, Chang Liu, Hongkang Zhu, Yuliang Cheng, Xiang Huo, Yahui Guo, He Qian","doi":"10.3390/toxics13010061","DOIUrl":null,"url":null,"abstract":"<p><p>Although food is essential for the survival of organisms, it can also trigger a variety of adverse reactions, ranging from nutrient intolerances to celiac disease and food allergies. Food not only contains essential nutrients but also includes numerous substances that may have positive or negative effects on the consuming organism. To protect against potentially harmful components, all animals have evolved defense mechanisms, which are similar to antimicrobial defenses but often come at the cost of the organism's health. When these defensive responses are exaggerated or misdirected, they can lead to adverse food reactions, where the costs outweigh the benefits. Furthermore, due to the persistent toxicity of harmful food components, the failure of defense mechanisms can also result in pathological effects triggered by food. This article review presents a food quality control framework that aims to clarify how these reactions relate to normal physiological processes. Organisms utilize several systems to coexist with symbiotic microbes, regulate them, and concurrently avoid, expel, or neutralize harmful pathogens. Similarly, food quality control systems allow organisms to absorb necessary nutrients while defending against low-quality or harmful components in food. Although many microbes are lethal in the absence of antimicrobial defenses, diseases related to microbiome dysregulation, such as inflammatory bowel disease, have significantly increased. Antitoxin defenses also come with costs and may fail due to insufficiencies, exaggerations, or misdirected actions, ultimately leading to adverse food reactions. With the changes in human diet and lifestyle, the failure of defense mechanisms has contributed to the rising incidence of food intolerances. This review explores the mechanisms of antitoxin defenses and analyzes how their failure can lead to adverse food reactions, emphasizing the importance of a comprehensive understanding of food quality control mechanisms for developing more effective treatments for food-triggered diseases.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13010061","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Although food is essential for the survival of organisms, it can also trigger a variety of adverse reactions, ranging from nutrient intolerances to celiac disease and food allergies. Food not only contains essential nutrients but also includes numerous substances that may have positive or negative effects on the consuming organism. To protect against potentially harmful components, all animals have evolved defense mechanisms, which are similar to antimicrobial defenses but often come at the cost of the organism's health. When these defensive responses are exaggerated or misdirected, they can lead to adverse food reactions, where the costs outweigh the benefits. Furthermore, due to the persistent toxicity of harmful food components, the failure of defense mechanisms can also result in pathological effects triggered by food. This article review presents a food quality control framework that aims to clarify how these reactions relate to normal physiological processes. Organisms utilize several systems to coexist with symbiotic microbes, regulate them, and concurrently avoid, expel, or neutralize harmful pathogens. Similarly, food quality control systems allow organisms to absorb necessary nutrients while defending against low-quality or harmful components in food. Although many microbes are lethal in the absence of antimicrobial defenses, diseases related to microbiome dysregulation, such as inflammatory bowel disease, have significantly increased. Antitoxin defenses also come with costs and may fail due to insufficiencies, exaggerations, or misdirected actions, ultimately leading to adverse food reactions. With the changes in human diet and lifestyle, the failure of defense mechanisms has contributed to the rising incidence of food intolerances. This review explores the mechanisms of antitoxin defenses and analyzes how their failure can lead to adverse food reactions, emphasizing the importance of a comprehensive understanding of food quality control mechanisms for developing more effective treatments for food-triggered diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.
期刊最新文献
RETRACTED: Di Paola et al. Environmental Risk Assessment of Dexamethasone Sodium Phosphate and Tocilizumab Mixture in Zebrafish Early Life Stage (Danio rerio). Toxics 2022, 10, 279. RETRACTED: Paola et al. Environmental Impact of Pharmaceutical Pollutants: Synergistic Toxicity of Ivermectin and Cypermethrin. Toxics 2022, 10, 388. RETRACTED: Di Paola et al. Combined Effects of Potassium Perchlorate and a Neonicotinoid on Zebrafish Larvae (Danio rerio). Toxics 2022, 10, 203. Human Activity as a Growing Threat to Marine Ecosystems: Plastic and Temperature Effects on the Sponge Sarcotragus spinosulus. Subchronic Exposure to Low-Dose Chlorfenapyr and Emamectin Benzoate Disrupts Kidney Metabolism in Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1