Luca Andriollo, Aurelio Picchi, Giulio Iademarco, Andrea Fidanza, Loris Perticarini, Stefano Marco Paolo Rossi, Giandomenico Logroscino, Francesco Benazzo
{"title":"The Role of Artificial Intelligence and Emerging Technologies in Advancing Total Hip Arthroplasty.","authors":"Luca Andriollo, Aurelio Picchi, Giulio Iademarco, Andrea Fidanza, Loris Perticarini, Stefano Marco Paolo Rossi, Giandomenico Logroscino, Francesco Benazzo","doi":"10.3390/jpm15010021","DOIUrl":null,"url":null,"abstract":"<p><p>Total hip arthroplasty (THA) is a widely performed surgical procedure that has evolved significantly due to advancements in artificial intelligence (AI) and robotics. As demand for THA grows, reliable tools are essential to enhance diagnosis, preoperative planning, surgical precision, and postoperative rehabilitation. AI applications in orthopedic surgery offer innovative solutions, including automated hip osteoarthritis (OA) diagnosis, precise implant positioning, and personalized risk stratification, thereby improving patient outcomes. Deep learning models have transformed OA severity grading and implant identification by automating traditionally manual processes with high accuracy. Additionally, AI-powered systems optimize preoperative planning by predicting the hip joint center and identifying complications using multimodal data. Robotic-assisted THA enhances surgical precision with real-time feedback, reducing complications such as dislocations and leg length discrepancies while accelerating recovery. Despite these advancements, barriers such as cost, accessibility, and the steep learning curve for surgeons hinder widespread adoption. Postoperative rehabilitation benefits from technologies like virtual and augmented reality and telemedicine, which enhance patient engagement and adherence. However, limitations, particularly among elderly populations with lower adaptability to technology, underscore the need for user-friendly platforms. To ensure comprehensiveness, a structured literature search was conducted using PubMed, Scopus, and Web of Science. Keywords included \"artificial intelligence\", \"machine learning\", \"robotics\", and \"total hip arthroplasty\". Inclusion criteria emphasized peer-reviewed studies published in English within the last decade focusing on technological advancements and clinical outcomes. This review evaluates AI and robotics' role in THA, highlighting opportunities and challenges and emphasizing further research and real-world validation to integrate these technologies into clinical practice effectively.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767033/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15010021","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Total hip arthroplasty (THA) is a widely performed surgical procedure that has evolved significantly due to advancements in artificial intelligence (AI) and robotics. As demand for THA grows, reliable tools are essential to enhance diagnosis, preoperative planning, surgical precision, and postoperative rehabilitation. AI applications in orthopedic surgery offer innovative solutions, including automated hip osteoarthritis (OA) diagnosis, precise implant positioning, and personalized risk stratification, thereby improving patient outcomes. Deep learning models have transformed OA severity grading and implant identification by automating traditionally manual processes with high accuracy. Additionally, AI-powered systems optimize preoperative planning by predicting the hip joint center and identifying complications using multimodal data. Robotic-assisted THA enhances surgical precision with real-time feedback, reducing complications such as dislocations and leg length discrepancies while accelerating recovery. Despite these advancements, barriers such as cost, accessibility, and the steep learning curve for surgeons hinder widespread adoption. Postoperative rehabilitation benefits from technologies like virtual and augmented reality and telemedicine, which enhance patient engagement and adherence. However, limitations, particularly among elderly populations with lower adaptability to technology, underscore the need for user-friendly platforms. To ensure comprehensiveness, a structured literature search was conducted using PubMed, Scopus, and Web of Science. Keywords included "artificial intelligence", "machine learning", "robotics", and "total hip arthroplasty". Inclusion criteria emphasized peer-reviewed studies published in English within the last decade focusing on technological advancements and clinical outcomes. This review evaluates AI and robotics' role in THA, highlighting opportunities and challenges and emphasizing further research and real-world validation to integrate these technologies into clinical practice effectively.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.