Potential Molecular Mechanisms of Jiedutongluo Tiaoying Formula in Treating Hyperthyroidism Based on Network Pharmacology and In Vivo Experiments in Mice.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY Physiological genomics Pub Date : 2025-01-24 DOI:10.1152/physiolgenomics.00113.2024
Xin Huang, Binqin Chen, Xiaoli Xiao, Chunli Piao
{"title":"Potential Molecular Mechanisms of Jiedutongluo Tiaoying Formula in Treating Hyperthyroidism Based on Network Pharmacology and <i>In Vivo</i> Experiments in Mice.","authors":"Xin Huang, Binqin Chen, Xiaoli Xiao, Chunli Piao","doi":"10.1152/physiolgenomics.00113.2024","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> \"Jiedutongluo Tiaoying Formula\" (JDTLTYF) TCM prescriptions can effectively treat hyperthyroidism and effectively improve the condition of patients. <b>Methods:</b> The main active ingredients of JDTLTYF were collected from the TCMSP database and the target was predicted. Genes related to hyperthyroidism were identified using DisGeNET, GeneCards and OMIM databases. Protein-protein interaction (PPI) network and interaction network of \"formula-herb-active ingredient-target genes\" was constructed. Mass spectrometry was used to identify the components. The binding of key components to the target was verified by molecular docking and molecular dynamics (MD) simulations. A hyperthyroidism mouse model was established using levothyroxine sodium tablets, and the hormone and expression levels of inflammatory factorswere examined by ELISA and western blot. <b>Results:</b> The key genes of JDTLTYF in the treatment of hyperthyroidism were TNF and AKT1. The results of mass spectrometry also showed that quercetin was one of the main components. The results of molecular docking and MD simulation showed that the binding free energy between AKT1 and quercetin was the lowest and the binding was stable. <i>In vivo</i> experimental results showed that gastric lavage with JDTLTYF could target AKT1 and TNF-α, effectively alleviate the pathological features of hyperthyroidism in mice and reduce inflammation response. <b>Conclusion:</b> This study elucidated the key small molecule compounds and their action targets of JDTLTYF in the treatment of hyperthyroidism. It provides a direction for the development of new drugs for clinical hyperthyroidism.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00113.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: "Jiedutongluo Tiaoying Formula" (JDTLTYF) TCM prescriptions can effectively treat hyperthyroidism and effectively improve the condition of patients. Methods: The main active ingredients of JDTLTYF were collected from the TCMSP database and the target was predicted. Genes related to hyperthyroidism were identified using DisGeNET, GeneCards and OMIM databases. Protein-protein interaction (PPI) network and interaction network of "formula-herb-active ingredient-target genes" was constructed. Mass spectrometry was used to identify the components. The binding of key components to the target was verified by molecular docking and molecular dynamics (MD) simulations. A hyperthyroidism mouse model was established using levothyroxine sodium tablets, and the hormone and expression levels of inflammatory factorswere examined by ELISA and western blot. Results: The key genes of JDTLTYF in the treatment of hyperthyroidism were TNF and AKT1. The results of mass spectrometry also showed that quercetin was one of the main components. The results of molecular docking and MD simulation showed that the binding free energy between AKT1 and quercetin was the lowest and the binding was stable. In vivo experimental results showed that gastric lavage with JDTLTYF could target AKT1 and TNF-α, effectively alleviate the pathological features of hyperthyroidism in mice and reduce inflammation response. Conclusion: This study elucidated the key small molecule compounds and their action targets of JDTLTYF in the treatment of hyperthyroidism. It provides a direction for the development of new drugs for clinical hyperthyroidism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
期刊最新文献
Alternative splicing of CADM1 is associated with endothelial progenitor cell dysfunction in preeclampsia. Vacuole Membrane Protein 1 and Acute Response to Renal Ischemia and Ischemia/Reperfusion. Fluxomics Combined with Shotgun Proteomics Reveals a Differential Response of Bovine Kidney Cells to Extracellular Palmitic and α-Linolenic Acid. Drinking pattern and sex modulate the impact of ethanol consumption on the mouse gut microbiome. Relationship between Guillain-Barré syndrome and cardiovascular disease: a bidirectional Mendelian randomization study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1