Zanovello Lucia, Galla Giulio, Girardi Matteo, Casari Stefano, Lo Presti Irene, Pedrini Paolo, Bertorelle Giorgio, Heidi C Hauffe
{"title":"More Than Meets the Eye: Unraveling the Interactions Between Skin Microbiota and Habitat in an Opportunistic Amphibian.","authors":"Zanovello Lucia, Galla Giulio, Girardi Matteo, Casari Stefano, Lo Presti Irene, Pedrini Paolo, Bertorelle Giorgio, Heidi C Hauffe","doi":"10.1007/s00248-025-02489-1","DOIUrl":null,"url":null,"abstract":"<p><p>With amphibians still holding the record as the most threatened class of terrestrial vertebrates, their skin microbiota has been shown to play a relevant role in their survival in a fast-changing world. Yet little is known about how abiotic factors associated with different aquatic habitats impact these skin microorganisms. Here we chose the yellow-bellied toad (Bombina variegata), a small anuran that colonizes a wide range of wetland habitats, to investigate how the diversity and composition of both its bacterial and fungal skin communities vary across different habitats and with water characteristics (temperature, pH, and dissolved oxygen) of these habitats. Skin microbiota was sampled from 14 sites in the Province of Trento (Italy), including natural pools, ephemeral ponds, irrigation tanks, and farm ponds. Interestingly, the diversity of the two microbial components was also highly correlated. Close associations between both the diversity and composition of water and skin communities were noted for each habitat and sampling site, suggesting that water bodies actively contribute to the skin microbiota assemblage. In addition, water pH, temperature, and dissolved oxygen affected both bacterial and fungal diversity of skin. We confirmed the presence of Batrachochytrium dendrobatidis in skin samples of animals collected from eight waterbodies, as well as more than 60 microbial taxa previously associated with resistance to this pathogen. We concluded that both skin bacterial and fungal communities appear to be influenced by each other as well as by environmental communities and conditions, and these relationships connecting the whole ecosystem should be considered in future research concerning amphibian conservation.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"176"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02489-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With amphibians still holding the record as the most threatened class of terrestrial vertebrates, their skin microbiota has been shown to play a relevant role in their survival in a fast-changing world. Yet little is known about how abiotic factors associated with different aquatic habitats impact these skin microorganisms. Here we chose the yellow-bellied toad (Bombina variegata), a small anuran that colonizes a wide range of wetland habitats, to investigate how the diversity and composition of both its bacterial and fungal skin communities vary across different habitats and with water characteristics (temperature, pH, and dissolved oxygen) of these habitats. Skin microbiota was sampled from 14 sites in the Province of Trento (Italy), including natural pools, ephemeral ponds, irrigation tanks, and farm ponds. Interestingly, the diversity of the two microbial components was also highly correlated. Close associations between both the diversity and composition of water and skin communities were noted for each habitat and sampling site, suggesting that water bodies actively contribute to the skin microbiota assemblage. In addition, water pH, temperature, and dissolved oxygen affected both bacterial and fungal diversity of skin. We confirmed the presence of Batrachochytrium dendrobatidis in skin samples of animals collected from eight waterbodies, as well as more than 60 microbial taxa previously associated with resistance to this pathogen. We concluded that both skin bacterial and fungal communities appear to be influenced by each other as well as by environmental communities and conditions, and these relationships connecting the whole ecosystem should be considered in future research concerning amphibian conservation.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.