Construction of Phosphate-Solubilizing Microbial Consortium and Its Effect on the Remediation of Saline-Alkali Soil.

IF 3.3 3区 生物学 Q2 ECOLOGY Microbial Ecology Pub Date : 2025-03-05 DOI:10.1007/s00248-024-02485-x
Ting Zhang, Xue-Li Wang, Juan Zhou, Wei Zhou, Shao-Qi Zhou
{"title":"Construction of Phosphate-Solubilizing Microbial Consortium and Its Effect on the Remediation of Saline-Alkali Soil.","authors":"Ting Zhang, Xue-Li Wang, Juan Zhou, Wei Zhou, Shao-Qi Zhou","doi":"10.1007/s00248-024-02485-x","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, phosphate solubilizing bacteria (PSB) with good phosphate-solubilizing capability were isolated from phosphogypsum (PG) storage yard, and phosphate-solubilizing bacteria without antagonistic effect were selected to construct phosphate solubilizing microbial consortium (PSMC), and the synergistic effect of PSMC and PG on the physical and chemical properties of saline-alkali soil, soil enzyme activity, soil bacterial diversity, and the growth index and biomass of peanut plants were explored. The results showed that the effect of phosphorus containing soil amendment on saline-alkali soil was better than that of single PSMC or PG. In the T6 group (untreated saline-alkali soil (1.5 kg) + PSMC stock solution (15 mL) + PG (6.0 g)), the pH of saline-alkali soil decreased from 8.54 to 7.03, the content of organic matter increased by 6.64%, the content of alkali hydrolyzable nitrogen, available phosphorus and available potassium increased by 81.68%, 60.31%, and 42.03%, respectively, and the activity of alkaline phosphatase increased by 94.95%. In addition, the electrical conductivity value in T4 group (untreated saline-alkali soil (1.5 kg) + PSMC stock solution (15 mL) + PG (3.0g)) decreased significantly by 20.21%. The diversity and richness of bacterial community in T4 group were the highest, and the growth of peanut plants was the best. The fresh weight of roots and stems increased by 73.34% and 116.6%, respectively. In conclusion, the phosphorus containing soil conditioner prepared by PSMC and PG can effectively improve the soil environment of saline-alkali soil and promote the resource utilization of saline alkali soil.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"11"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02485-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, phosphate solubilizing bacteria (PSB) with good phosphate-solubilizing capability were isolated from phosphogypsum (PG) storage yard, and phosphate-solubilizing bacteria without antagonistic effect were selected to construct phosphate solubilizing microbial consortium (PSMC), and the synergistic effect of PSMC and PG on the physical and chemical properties of saline-alkali soil, soil enzyme activity, soil bacterial diversity, and the growth index and biomass of peanut plants were explored. The results showed that the effect of phosphorus containing soil amendment on saline-alkali soil was better than that of single PSMC or PG. In the T6 group (untreated saline-alkali soil (1.5 kg) + PSMC stock solution (15 mL) + PG (6.0 g)), the pH of saline-alkali soil decreased from 8.54 to 7.03, the content of organic matter increased by 6.64%, the content of alkali hydrolyzable nitrogen, available phosphorus and available potassium increased by 81.68%, 60.31%, and 42.03%, respectively, and the activity of alkaline phosphatase increased by 94.95%. In addition, the electrical conductivity value in T4 group (untreated saline-alkali soil (1.5 kg) + PSMC stock solution (15 mL) + PG (3.0g)) decreased significantly by 20.21%. The diversity and richness of bacterial community in T4 group were the highest, and the growth of peanut plants was the best. The fresh weight of roots and stems increased by 73.34% and 116.6%, respectively. In conclusion, the phosphorus containing soil conditioner prepared by PSMC and PG can effectively improve the soil environment of saline-alkali soil and promote the resource utilization of saline alkali soil.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Ecology
Microbial Ecology 生物-海洋与淡水生物学
CiteScore
6.90
自引率
2.80%
发文量
212
审稿时长
3-8 weeks
期刊介绍: The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.
期刊最新文献
Construction of Phosphate-Solubilizing Microbial Consortium and Its Effect on the Remediation of Saline-Alkali Soil. Diversity and Symbiotic Associations of Endophytic Fungi in Calotropis procera (Aiton) W.T. Aiton (Asclepiadaceae) Across Three Egyptian Regions: Phenotypic Characterization and Mitotic Activity. The Cyanobacterial Oxadiazine Nocuolin A Shows Broad-Spectrum Toxicity Against Protozoans and the Nematode C. elegans. Enhancing Soil Health Through Biocrusts: A Microbial Ecosystem Approach for Degradation Control and Restoration. Yeasts Prefer Daycares and Molds Prefer Private Homes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1