Ting Zhang, Xue-Li Wang, Juan Zhou, Wei Zhou, Shao-Qi Zhou
{"title":"Construction of Phosphate-Solubilizing Microbial Consortium and Its Effect on the Remediation of Saline-Alkali Soil.","authors":"Ting Zhang, Xue-Li Wang, Juan Zhou, Wei Zhou, Shao-Qi Zhou","doi":"10.1007/s00248-024-02485-x","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, phosphate solubilizing bacteria (PSB) with good phosphate-solubilizing capability were isolated from phosphogypsum (PG) storage yard, and phosphate-solubilizing bacteria without antagonistic effect were selected to construct phosphate solubilizing microbial consortium (PSMC), and the synergistic effect of PSMC and PG on the physical and chemical properties of saline-alkali soil, soil enzyme activity, soil bacterial diversity, and the growth index and biomass of peanut plants were explored. The results showed that the effect of phosphorus containing soil amendment on saline-alkali soil was better than that of single PSMC or PG. In the T6 group (untreated saline-alkali soil (1.5 kg) + PSMC stock solution (15 mL) + PG (6.0 g)), the pH of saline-alkali soil decreased from 8.54 to 7.03, the content of organic matter increased by 6.64%, the content of alkali hydrolyzable nitrogen, available phosphorus and available potassium increased by 81.68%, 60.31%, and 42.03%, respectively, and the activity of alkaline phosphatase increased by 94.95%. In addition, the electrical conductivity value in T4 group (untreated saline-alkali soil (1.5 kg) + PSMC stock solution (15 mL) + PG (3.0g)) decreased significantly by 20.21%. The diversity and richness of bacterial community in T4 group were the highest, and the growth of peanut plants was the best. The fresh weight of roots and stems increased by 73.34% and 116.6%, respectively. In conclusion, the phosphorus containing soil conditioner prepared by PSMC and PG can effectively improve the soil environment of saline-alkali soil and promote the resource utilization of saline alkali soil.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"11"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02485-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, phosphate solubilizing bacteria (PSB) with good phosphate-solubilizing capability were isolated from phosphogypsum (PG) storage yard, and phosphate-solubilizing bacteria without antagonistic effect were selected to construct phosphate solubilizing microbial consortium (PSMC), and the synergistic effect of PSMC and PG on the physical and chemical properties of saline-alkali soil, soil enzyme activity, soil bacterial diversity, and the growth index and biomass of peanut plants were explored. The results showed that the effect of phosphorus containing soil amendment on saline-alkali soil was better than that of single PSMC or PG. In the T6 group (untreated saline-alkali soil (1.5 kg) + PSMC stock solution (15 mL) + PG (6.0 g)), the pH of saline-alkali soil decreased from 8.54 to 7.03, the content of organic matter increased by 6.64%, the content of alkali hydrolyzable nitrogen, available phosphorus and available potassium increased by 81.68%, 60.31%, and 42.03%, respectively, and the activity of alkaline phosphatase increased by 94.95%. In addition, the electrical conductivity value in T4 group (untreated saline-alkali soil (1.5 kg) + PSMC stock solution (15 mL) + PG (3.0g)) decreased significantly by 20.21%. The diversity and richness of bacterial community in T4 group were the highest, and the growth of peanut plants was the best. The fresh weight of roots and stems increased by 73.34% and 116.6%, respectively. In conclusion, the phosphorus containing soil conditioner prepared by PSMC and PG can effectively improve the soil environment of saline-alkali soil and promote the resource utilization of saline alkali soil.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.