The Effects of Disinfection Byproduct 2,6-Dichloro-1,4-benzoquinone on the Cyanobacterium Microcystis aeruginosa: From the Perspectives of Biochemistry and Non-Targeted Metabolomics.

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Toxics Pub Date : 2025-01-17 DOI:10.3390/toxics13010064
Tianqi Zhang, Zhaoyang Wang, Liang Wu, Chaonan Liu, Liang Meng, Fuxiang Tian, Meifang Hou, Haizhuan Lin, Jing Ye
{"title":"The Effects of Disinfection Byproduct 2,6-Dichloro-1,4-benzoquinone on the Cyanobacterium <i>Microcystis aeruginosa</i>: From the Perspectives of Biochemistry and Non-Targeted Metabolomics.","authors":"Tianqi Zhang, Zhaoyang Wang, Liang Wu, Chaonan Liu, Liang Meng, Fuxiang Tian, Meifang Hou, Haizhuan Lin, Jing Ye","doi":"10.3390/toxics13010064","DOIUrl":null,"url":null,"abstract":"<p><p>2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is an emerging chlorinated disinfection byproduct (DBP) in bodies of water. However, this compound poses an unknown toxic effect on cyanobacteria. In this study, the toxicological mechanisms of 2,6-DCBQ in <i>Microcystis aeruginosa</i> (<i>M. aeruginosa</i>) were investigated through physiological and nontargeted metabolomic assessments. The results show that 2,6-DCBQ inhibited the growth of <i>M. aeruginosa</i>, reduced its photosynthetic pigment and protein contents, increased the levels of reactive oxygen species, damaged the antioxidant defense system, and aggravated the cytomembrane. Meanwhile, 2,6-DCBQ stimulated the production and release of microcystin-LR (MC-LR) and altered the transcripts of genes associated with its synthesis (<i>mcyA</i>, <i>mcyD</i>) and transport (<i>mcyH</i>). In addition, nontargeted metabolomics of <i>M. aeruginosa</i> cells exposed to 0.1 mg/L 2,6-DCBQ identified 208 differential metabolites belonging to 10 metabolic pathways and revealed the considerable interference caused by 2,6-DCBQ among ABC transporters, the two-component system, and folate biosynthesis. This study deepens the understanding of the physiological and nontargeted metabolomic responses of <i>M. aeruginosa</i> exposed to 2,6-DCBQ, offers insights into the toxic effect of 2,6-DCBQ on <i>M. aeruginosa</i>, and provides a theoretical basis for the ecological risk assessment of emerging DBPs in accordance with water quality criteria.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13010064","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is an emerging chlorinated disinfection byproduct (DBP) in bodies of water. However, this compound poses an unknown toxic effect on cyanobacteria. In this study, the toxicological mechanisms of 2,6-DCBQ in Microcystis aeruginosa (M. aeruginosa) were investigated through physiological and nontargeted metabolomic assessments. The results show that 2,6-DCBQ inhibited the growth of M. aeruginosa, reduced its photosynthetic pigment and protein contents, increased the levels of reactive oxygen species, damaged the antioxidant defense system, and aggravated the cytomembrane. Meanwhile, 2,6-DCBQ stimulated the production and release of microcystin-LR (MC-LR) and altered the transcripts of genes associated with its synthesis (mcyA, mcyD) and transport (mcyH). In addition, nontargeted metabolomics of M. aeruginosa cells exposed to 0.1 mg/L 2,6-DCBQ identified 208 differential metabolites belonging to 10 metabolic pathways and revealed the considerable interference caused by 2,6-DCBQ among ABC transporters, the two-component system, and folate biosynthesis. This study deepens the understanding of the physiological and nontargeted metabolomic responses of M. aeruginosa exposed to 2,6-DCBQ, offers insights into the toxic effect of 2,6-DCBQ on M. aeruginosa, and provides a theoretical basis for the ecological risk assessment of emerging DBPs in accordance with water quality criteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2,6-二氯-1,4-苯醌(2,6-DCBQ)是水体中新出现的一种氯化消毒副产物(DBP)。然而,这种化合物对蓝藻的毒性作用尚不清楚。本研究通过生理学和非靶向代谢组学评估,研究了 2,6-DCBQ 对铜绿微囊藻(M. aeruginosa)的毒理机制。结果表明,2,6-DCBQ 可抑制铜绿微囊藻的生长,降低其光合色素和蛋白质含量,增加活性氧水平,破坏抗氧化防御系统,并使细胞膜恶化。同时,2,6-DCBQ 会刺激微囊藻毒素-LR(MC-LR)的产生和释放,并改变与其合成(mcyA、mcyD)和转运(mcyH)相关的基因转录。此外,对暴露于 0.1 mg/L 2,6-DCBQ 的铜绿微囊藻细胞进行的非靶向代谢组学研究发现了属于 10 种代谢途径的 208 种不同代谢物,并揭示了 2,6-DCBQ 对 ABC 转运体、双组分系统和叶酸生物合成的巨大干扰。这项研究加深了人们对暴露于 2,6-DCBQ 的铜绿微囊藻的生理和非靶向代谢组学反应的了解,有助于深入认识 2,6-DCBQ 对铜绿微囊藻的毒性作用,并为根据水质标准对新出现的 DBPs 进行生态风险评估提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.
期刊最新文献
RETRACTED: Di Paola et al. Environmental Risk Assessment of Dexamethasone Sodium Phosphate and Tocilizumab Mixture in Zebrafish Early Life Stage (Danio rerio). Toxics 2022, 10, 279. RETRACTED: Paola et al. Environmental Impact of Pharmaceutical Pollutants: Synergistic Toxicity of Ivermectin and Cypermethrin. Toxics 2022, 10, 388. RETRACTED: Di Paola et al. Combined Effects of Potassium Perchlorate and a Neonicotinoid on Zebrafish Larvae (Danio rerio). Toxics 2022, 10, 203. Human Activity as a Growing Threat to Marine Ecosystems: Plastic and Temperature Effects on the Sponge Sarcotragus spinosulus. Subchronic Exposure to Low-Dose Chlorfenapyr and Emamectin Benzoate Disrupts Kidney Metabolism in Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1