Protective Efficacy of Decreasing Antigen Doses of a Chlamydia abortus Subcellular Vaccine Against Ovine Enzootic Abortion in a Pregnant Sheep Challenge Model.

IF 5.2 3区 医学 Q1 IMMUNOLOGY Vaccines Pub Date : 2025-01-18 DOI:10.3390/vaccines13010089
Morag Livingstone, Kevin Aitchison, Javier Palarea-Albaladejo, Francesco Ciampi, Clare Underwood, Antonia Paladino, Francesca Chianini, Gary Entrican, Sean Ranjan Wattegedera, David Longbottom
{"title":"Protective Efficacy of Decreasing Antigen Doses of a <i>Chlamydia abortus</i> Subcellular Vaccine Against Ovine Enzootic Abortion in a Pregnant Sheep Challenge Model.","authors":"Morag Livingstone, Kevin Aitchison, Javier Palarea-Albaladejo, Francesco Ciampi, Clare Underwood, Antonia Paladino, Francesca Chianini, Gary Entrican, Sean Ranjan Wattegedera, David Longbottom","doi":"10.3390/vaccines13010089","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objective: </strong><i>Chlamydia abortus</i>, the cause of ovine enzootic abortion, is a zoonotic bacterial pathogen and one of the most infectious causes of foetal death in sheep worldwide. Although the disease can be controlled using commercial inactivated and live whole-organism vaccines, there are issues with both, particularly concerning efficacy and safety. Recently, we have described the development of a new COMC (chlamydial outer membrane complex) vaccine based on a detergent-extracted outer membrane protein preparation of the pathogen, which can be delivered in a single inoculation and is both efficacious and safe.</p><p><strong>Methods: </strong>In this study, we have evaluated the COMC vaccine further in a dose-response titration of the chlamydial antigen content of the vaccine (from 20 to 2.5 µg in seven experimental groups) using an established pregnant sheep challenge model.</p><p><strong>Results: </strong>No obvious dose-response relationship was observed across the groups, with a single abortion event occurring in four of the groups and three in the lowest dose group (2.5 µg). No abortions occurred in the 15 and 10 µg groups. The abortion rates (0-14%) were significantly below that of the challenge control group (33%). A similar reduction in bacterial shedding of infectious organisms following parturition was observed in the vaccinated groups compared to the challenge control group, which is important in terms of reducing potential transmission to naive animals.</p><p><strong>Conclusions: </strong>The results show that a dose of 10 µg antigen in the vaccine will be optimal in terms of maximising efficacy, reducing shedding at parturition, and ensuring it is cost-effective to produce for commercial manufacture.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"13 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768554/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines13010089","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objective: Chlamydia abortus, the cause of ovine enzootic abortion, is a zoonotic bacterial pathogen and one of the most infectious causes of foetal death in sheep worldwide. Although the disease can be controlled using commercial inactivated and live whole-organism vaccines, there are issues with both, particularly concerning efficacy and safety. Recently, we have described the development of a new COMC (chlamydial outer membrane complex) vaccine based on a detergent-extracted outer membrane protein preparation of the pathogen, which can be delivered in a single inoculation and is both efficacious and safe.

Methods: In this study, we have evaluated the COMC vaccine further in a dose-response titration of the chlamydial antigen content of the vaccine (from 20 to 2.5 µg in seven experimental groups) using an established pregnant sheep challenge model.

Results: No obvious dose-response relationship was observed across the groups, with a single abortion event occurring in four of the groups and three in the lowest dose group (2.5 µg). No abortions occurred in the 15 and 10 µg groups. The abortion rates (0-14%) were significantly below that of the challenge control group (33%). A similar reduction in bacterial shedding of infectious organisms following parturition was observed in the vaccinated groups compared to the challenge control group, which is important in terms of reducing potential transmission to naive animals.

Conclusions: The results show that a dose of 10 µg antigen in the vaccine will be optimal in terms of maximising efficacy, reducing shedding at parturition, and ensuring it is cost-effective to produce for commercial manufacture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Vaccines
Vaccines Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍: Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.
期刊最新文献
Enhancing DNA Vaccine Delivery Through Stearyl-Modified Cell-Penetrating Peptides: Improved Antigen Expression and Immune Response In Vitro and In Vivo. Impact of HPV Catch-Up Vaccination on High-Grade Cervical Lesions (CIN2+) Among Women Aged 26-30 in Northern Norway. Adenoviral Vector-Based Vaccine Expressing Hemagglutinin Stem Region with Autophagy-Inducing Peptide Confers Cross-Protection Against Group 1 and 2 Influenza A Viruses. Robust and Long-Lasting Immunity and Protection in Mice Induced by Lipopolyplex-Delivered mRNA Vaccines Expressing the Prefusion Protein of Respiratory Syncytial Virus. A Study on the Induction of Multi-Type Immune Responses in Mice via an mRNA Vaccine Based on Hemagglutinin and Neuraminidase Antigen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1