Liliya I Mukhametova, Marya K Kolokolova, Ivan A Shevchenko, Boris S Tupertsev, Anatoly V Zherdev, Chuanlai Xu, Sergei A Eremin
{"title":"Fluorescence Polarization Immunoassay for Rapid, Sensitive Detection of the Herbicide 2,4-Dichlorophenoxyacetic Acid in Juice and Water Samples.","authors":"Liliya I Mukhametova, Marya K Kolokolova, Ivan A Shevchenko, Boris S Tupertsev, Anatoly V Zherdev, Chuanlai Xu, Sergei A Eremin","doi":"10.3390/bios15010032","DOIUrl":null,"url":null,"abstract":"<p><p>2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the popular herbicides that is widely used in agriculture and can be found in food and water. A rapid and sensitive fluorescence polarization immunoassay (FPIA) was proposed for the detection of 2,4-D in juice and water. New tracers, 2,4-D-buthylenediamin fluoresceinthiocarbamyl (2,4-D-BDF) and 2,4-D-glycine aminofluorescein (2,4-D-GAF), were obtained and characterized. Monoclonal antibodies (MAb) obtained against 2,4-D were used as a recognition reagent. The kinetics of the interaction of MAb and tracers were studied, and the kinetic parameters of their binding were calculated. High specificity of binding of tracers and MAb was shown. In this work, an approach was elaborated on to reduce the detection limit of 2,4-D by the FPIA method by changing the volume of the studied sample. The optimized FPIA in a competitive format was characterized by the LODs of 2,4-D 8 and 0.4 ng/mL and the working ranges 30-3000 ng/mL and 3-300 ng/mL for juice and water, respectively. The entire test cycle (from sample receipt to evaluation of the analysis results) took only 20 min. The test for the recovery of 2,4-D in juice and water gave values from 95 to 120%, which demonstrated the reliability of the herbicide determination in real samples.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763590/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15010032","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the popular herbicides that is widely used in agriculture and can be found in food and water. A rapid and sensitive fluorescence polarization immunoassay (FPIA) was proposed for the detection of 2,4-D in juice and water. New tracers, 2,4-D-buthylenediamin fluoresceinthiocarbamyl (2,4-D-BDF) and 2,4-D-glycine aminofluorescein (2,4-D-GAF), were obtained and characterized. Monoclonal antibodies (MAb) obtained against 2,4-D were used as a recognition reagent. The kinetics of the interaction of MAb and tracers were studied, and the kinetic parameters of their binding were calculated. High specificity of binding of tracers and MAb was shown. In this work, an approach was elaborated on to reduce the detection limit of 2,4-D by the FPIA method by changing the volume of the studied sample. The optimized FPIA in a competitive format was characterized by the LODs of 2,4-D 8 and 0.4 ng/mL and the working ranges 30-3000 ng/mL and 3-300 ng/mL for juice and water, respectively. The entire test cycle (from sample receipt to evaluation of the analysis results) took only 20 min. The test for the recovery of 2,4-D in juice and water gave values from 95 to 120%, which demonstrated the reliability of the herbicide determination in real samples.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.