Yujie Zheng, Limin Zhang, Weijie Song, Feng Gao, Dongyuan Liu
{"title":"Enhancing Functional Breast Imaging: A sCMOS Camera-Based Lock-in Implementation for Dynamic Tomography.","authors":"Yujie Zheng, Limin Zhang, Weijie Song, Feng Gao, Dongyuan Liu","doi":"10.1002/jbio.202400473","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse optical tomography (DOT) enables the in vivo quantification of tissue chromophores, specifically the discernment of oxy- and deoxy-hemoglobin (HbO and HbR, correspondingly). This specific criterion is useful in detecting and predicting early-stage neoadjuvant breast cancer treatment response. To address the issues of the limited channels in the fiber-dependent breast DOT system and limited signal-to-noise ratio in the camera-dependent systems, we hereby present a camera-based lock-in detection scheme to achieve dynamic DOT with improved SNR, which adopted orthogonal frequency division multiplexing technology. The evaluation of the system performance was conducted on tissue phantoms and neoplastic rats, and the results show that this system boasts the capability of executing parallel measurement utilizing a camera detector, enabling the achievement of highly sensitive, and dynamic tomography for breast screening applications.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400473"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diffuse optical tomography (DOT) enables the in vivo quantification of tissue chromophores, specifically the discernment of oxy- and deoxy-hemoglobin (HbO and HbR, correspondingly). This specific criterion is useful in detecting and predicting early-stage neoadjuvant breast cancer treatment response. To address the issues of the limited channels in the fiber-dependent breast DOT system and limited signal-to-noise ratio in the camera-dependent systems, we hereby present a camera-based lock-in detection scheme to achieve dynamic DOT with improved SNR, which adopted orthogonal frequency division multiplexing technology. The evaluation of the system performance was conducted on tissue phantoms and neoplastic rats, and the results show that this system boasts the capability of executing parallel measurement utilizing a camera detector, enabling the achievement of highly sensitive, and dynamic tomography for breast screening applications.