Xinlei Wang, Min Lv, Jin Liu, Mingtao Ba, Mingsan Man, Kun Yin, Jing Ding, Xianbo Chang, Lingxin Chen
{"title":"Size-specific mediation of the physiological responses and degradation ability of microalgae to sulfamerazine by microplastics","authors":"Xinlei Wang, Min Lv, Jin Liu, Mingtao Ba, Mingsan Man, Kun Yin, Jing Ding, Xianbo Chang, Lingxin Chen","doi":"10.1016/j.aquatox.2025.107257","DOIUrl":null,"url":null,"abstract":"Antibiotics and microplastics (MPs) are two classes of emerging contaminants that are commonly found in various water environments. However, how different sized MPs affect the toxicity and biodegradation of antibiotics remains poorly understood. We investigated the effects of polystyrene (PS) MPs with different particle sizes (100 nm and 30 μm) on the physiological responses and degradation behavior of <ce:italic>Phaeodactylum tricornutum</ce:italic> to sulfamerazine (SMR). Results showed that microalgae growth was inhibited by SMR, and MPs especially those of smaller size exacerbated the inhibitory effects of SMR on microalgae, including decreasing the content of chlorophyll a, carotenoids, malondiadehyde and superoxide dismutase activity. MPs exhibited low adsorption towards SMR, and MPs especially 30 μm MPs strengthened SMR photodegradation through leaching more organic chemicals. In comparison, 100 nm MPs obstructed the light, resulting in insignificant effects on photodegradation. Apart from photodegradation, SMR could be bioaccumulated and biodegraded by microalgae, and biodegradation was the main removal mechanism. The overall influence of MPs on SMR degradation by microalgae was a balance of the promotion on photodegradation and negative effects on microalgae growth, with the degradation efficiency and rate of SMR significantly lower in treatment of 100 nm MPs (0.0128 ± 0.0012 day<ce:sup loc=\"post\">−1</ce:sup>, 30.13 ± 0.36 %) than treatments without MPs (0.0155 ± 0.0011 day<ce:sup loc=\"post\">−1</ce:sup>, 32.90 ± 3.11 %) or with 30 μm MPs (0.0165 ± 0.0013 day<ce:sup loc=\"post\">−1</ce:sup>, 34.46 ± 2.52 %). Overall, this study reveals the size-specific effects of MPs on the toxicity and degradation behavior of SMR, providing novel insights into the combined effects of SMR and MPs.","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"23 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.aquatox.2025.107257","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotics and microplastics (MPs) are two classes of emerging contaminants that are commonly found in various water environments. However, how different sized MPs affect the toxicity and biodegradation of antibiotics remains poorly understood. We investigated the effects of polystyrene (PS) MPs with different particle sizes (100 nm and 30 μm) on the physiological responses and degradation behavior of Phaeodactylum tricornutum to sulfamerazine (SMR). Results showed that microalgae growth was inhibited by SMR, and MPs especially those of smaller size exacerbated the inhibitory effects of SMR on microalgae, including decreasing the content of chlorophyll a, carotenoids, malondiadehyde and superoxide dismutase activity. MPs exhibited low adsorption towards SMR, and MPs especially 30 μm MPs strengthened SMR photodegradation through leaching more organic chemicals. In comparison, 100 nm MPs obstructed the light, resulting in insignificant effects on photodegradation. Apart from photodegradation, SMR could be bioaccumulated and biodegraded by microalgae, and biodegradation was the main removal mechanism. The overall influence of MPs on SMR degradation by microalgae was a balance of the promotion on photodegradation and negative effects on microalgae growth, with the degradation efficiency and rate of SMR significantly lower in treatment of 100 nm MPs (0.0128 ± 0.0012 day−1, 30.13 ± 0.36 %) than treatments without MPs (0.0155 ± 0.0011 day−1, 32.90 ± 3.11 %) or with 30 μm MPs (0.0165 ± 0.0013 day−1, 34.46 ± 2.52 %). Overall, this study reveals the size-specific effects of MPs on the toxicity and degradation behavior of SMR, providing novel insights into the combined effects of SMR and MPs.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.