FastEEC: Fast evaluation of N-point energy correlators

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Physics Letters B Pub Date : 2025-02-01 DOI:10.1016/j.physletb.2025.139276
Ankita Budhraja , Wouter J. Waalewijn
{"title":"FastEEC: Fast evaluation of N-point energy correlators","authors":"Ankita Budhraja ,&nbsp;Wouter J. Waalewijn","doi":"10.1016/j.physletb.2025.139276","DOIUrl":null,"url":null,"abstract":"<div><div>Energy correlators characterize the asymptotic energy flow in scattering events produced at colliders, from which the microscopic physics of the scattering can be deduced. This view of collisions is akin to analyzes of the Cosmic Microwave Background, and a range of promising phenomenological applications of energy correlators have been identified, including the study of hadronization, the deadcone effect, measuring <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and the top quark mass. While <em>N</em>-point energy correlators are interesting to study for larger values of <em>N</em>, their evaluation is computationally intensive, scaling like <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>/</mo><mi>N</mi><mo>!</mo></math></span>, where <em>M</em> is the number of particles. In this Letter, we develop a fast, approximate method for their evaluation exploiting that correlations at a given angular scale are insensitive to effects at other (widely-separated) scales. This implies that the energy correlator can be computed on (sub)jets, effectively reducing <em>M</em>. Furthermore, we utilize a dynamical (sub)jet radius that allows us to obtain reliable results without restricting the angular scales being probed. For concreteness, we focus on the projected energy correlator which projects onto the largest separation between the <em>N</em> directions. E.g. for <span><math><mi>N</mi><mo>=</mo><mn>7</mn></math></span> we find a speed up of up to four orders of magnitude, depending on the desired accuracy. We also consider the possibility of raising the energy to a power higher than one in the energy correlator, which has been proposed to reduce soft sensitivity. These higher-power correlators are not collinear safe, but as a byproduct our approach suggests a natural method to regularize them, such that they can be described using perturbation theory. This Letter is accompanied by a public code that implements our method.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139276"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037026932500036X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Energy correlators characterize the asymptotic energy flow in scattering events produced at colliders, from which the microscopic physics of the scattering can be deduced. This view of collisions is akin to analyzes of the Cosmic Microwave Background, and a range of promising phenomenological applications of energy correlators have been identified, including the study of hadronization, the deadcone effect, measuring αs and the top quark mass. While N-point energy correlators are interesting to study for larger values of N, their evaluation is computationally intensive, scaling like MN/N!, where M is the number of particles. In this Letter, we develop a fast, approximate method for their evaluation exploiting that correlations at a given angular scale are insensitive to effects at other (widely-separated) scales. This implies that the energy correlator can be computed on (sub)jets, effectively reducing M. Furthermore, we utilize a dynamical (sub)jet radius that allows us to obtain reliable results without restricting the angular scales being probed. For concreteness, we focus on the projected energy correlator which projects onto the largest separation between the N directions. E.g. for N=7 we find a speed up of up to four orders of magnitude, depending on the desired accuracy. We also consider the possibility of raising the energy to a power higher than one in the energy correlator, which has been proposed to reduce soft sensitivity. These higher-power correlators are not collinear safe, but as a byproduct our approach suggests a natural method to regularize them, such that they can be described using perturbation theory. This Letter is accompanied by a public code that implements our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
期刊最新文献
N=2 superconformal gravitino in harmonic superspace Axion effects on gamma-ray spectral irregularities. II: Implications of EBL absorption Baryon number violating hydrogen decay Spontaneous CP violation, sterile neutrino dark matter and leptogenesis Unveiling the Secrets of Vortex Neutron Decay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1