Maria Gonzalez-Calabuig, Miguel-Ángel Fernández-Torres, Gustau Camps-Valls
{"title":"Generative networks for spatio-temporal gap filling of Sentinel-2 reflectances","authors":"Maria Gonzalez-Calabuig, Miguel-Ángel Fernández-Torres, Gustau Camps-Valls","doi":"10.1016/j.isprsjprs.2025.01.016","DOIUrl":null,"url":null,"abstract":"Earth observation from satellite sensors offers the possibility to monitor natural ecosystems by deriving spatially explicit and temporally resolved biogeophysical parameters. Optical remote sensing, however, suffers from missing data mainly due to the presence of clouds, sensor malfunctioning, and atmospheric conditions. This study proposes a novel deep learning architecture to address gap filling of satellite reflectances, more precisely the visible and near-infrared bands, and illustrates its performance at high-resolution Sentinel-2 data. We introduce GANFilling, a generative adversarial network capable of sequence-to-sequence translation, which comprises convolutional long short-term memory layers to effectively exploit complete dependencies in space–time series data. We focus on Europe and evaluate the method’s performance <ce:italic>quantitatively</ce:italic> (through distortion and perceptual metrics) and <ce:italic>qualitatively</ce:italic> (via visual inspection and visual quality metrics). Quantitatively, our model offers the best trade-off between denoising corrupted data and preserving noise-free information, underscoring the importance of considering multiple metrics jointly when assessing gap filling tasks. Qualitatively, it successfully deals with various noise sources, such as clouds and missing data, constituting a robust solution to multiple scenarios and settings. We also illustrate and quantify the quality of the generated product in the relevant downstream application of vegetation greenness forecasting, where using GANFilling enhances forecasting in approximately 70% of the considered regions in Europe. This research contributes to underlining the utility of deep learning for Earth observation data, which allows for improved spatially and temporally resolved monitoring of the Earth surface.","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"29 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.isprsjprs.2025.01.016","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Earth observation from satellite sensors offers the possibility to monitor natural ecosystems by deriving spatially explicit and temporally resolved biogeophysical parameters. Optical remote sensing, however, suffers from missing data mainly due to the presence of clouds, sensor malfunctioning, and atmospheric conditions. This study proposes a novel deep learning architecture to address gap filling of satellite reflectances, more precisely the visible and near-infrared bands, and illustrates its performance at high-resolution Sentinel-2 data. We introduce GANFilling, a generative adversarial network capable of sequence-to-sequence translation, which comprises convolutional long short-term memory layers to effectively exploit complete dependencies in space–time series data. We focus on Europe and evaluate the method’s performance quantitatively (through distortion and perceptual metrics) and qualitatively (via visual inspection and visual quality metrics). Quantitatively, our model offers the best trade-off between denoising corrupted data and preserving noise-free information, underscoring the importance of considering multiple metrics jointly when assessing gap filling tasks. Qualitatively, it successfully deals with various noise sources, such as clouds and missing data, constituting a robust solution to multiple scenarios and settings. We also illustrate and quantify the quality of the generated product in the relevant downstream application of vegetation greenness forecasting, where using GANFilling enhances forecasting in approximately 70% of the considered regions in Europe. This research contributes to underlining the utility of deep learning for Earth observation data, which allows for improved spatially and temporally resolved monitoring of the Earth surface.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.