Seonmi Choi , Jinseok Oh , Jeong Rye Park , Seung Yeop Yang , Hongdae Yun
{"title":"Effective data reduction algorithm for topological data analysis","authors":"Seonmi Choi , Jinseok Oh , Jeong Rye Park , Seung Yeop Yang , Hongdae Yun","doi":"10.1016/j.amc.2025.129302","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most interesting tools that have recently entered the data science toolbox is topological data analysis (TDA). With the explosion of available data sizes and dimensions, identifying and extracting the underlying structure of a given dataset is a fundamental challenge in data science, and TDA provides a methodology for analyzing the shape of a dataset using tools and prospects from algebraic topology. However, the computational complexity makes it quickly infeasible to process large datasets, especially those with high dimensions. Here, we introduce a preprocessing strategy called the Characteristic Lattice Algorithm (CLA), which allows users to reduce the size of a given dataset as desired while maintaining geometric and topological features in order to make the computation of TDA feasible or to shorten its computation time. In addition, we derive a stability theorem and an upper bound of the barcode errors for CLA based on the bottleneck distance.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"495 ","pages":"Article 129302"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325000293","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most interesting tools that have recently entered the data science toolbox is topological data analysis (TDA). With the explosion of available data sizes and dimensions, identifying and extracting the underlying structure of a given dataset is a fundamental challenge in data science, and TDA provides a methodology for analyzing the shape of a dataset using tools and prospects from algebraic topology. However, the computational complexity makes it quickly infeasible to process large datasets, especially those with high dimensions. Here, we introduce a preprocessing strategy called the Characteristic Lattice Algorithm (CLA), which allows users to reduce the size of a given dataset as desired while maintaining geometric and topological features in order to make the computation of TDA feasible or to shorten its computation time. In addition, we derive a stability theorem and an upper bound of the barcode errors for CLA based on the bottleneck distance.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.