首页 > 最新文献

Applied Mathematics and Computation最新文献

英文 中文
Mass conservation in the validation of fluid-poroelastic structure interaction solvers 流体-气弹性结构相互作用求解器验证中的质量守恒问题
IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-27 DOI: 10.1016/j.amc.2024.129081
Benchmark problems commonly used to test numerical methods for fluid-poroelastic structure interaction often rely on simple examples constructed using the method of manufactured solutions. In this work, we show that such examples are not adequate to demonstrate the performance of the method, especially in cases when the poroelastic system is written in the primal or primal-mixed formulation, and when the dynamics of the poroelastic structure are driven only by dynamic loading from the fluid, which often occurs in biomedical applications. In those cases, the only forcing on the structure comes from the interaction with the fluid at the fluid-structure interface, where the coupling conditions are imposed. One of those conditions is a kinematic condition which enforces the conservation of mass. If this condition is not accurately satisfied, the resulting dynamics might lead to highly inaccurate results in the entire domain. We present three benchmark problems: Example 1 is based on the method of manufactured solutions; Example 2 is based on parameters used in geomechanics; and Example 3 is a benchmark problem with parameters from hemodynamics. Using these examples, we test the performance of the primal, primal-mixed and dual-mixed formulations. While all methods perform well in the first two examples, the primal and primal-mixed formulations exhibit large errors in Example 3, where the densities of the fluid and solid are comparable, and the structure dynamics is purely driven by the fluid loading. To recover the accuracy, we propose to use the primal and primal-mixed methods with a penalty term, which helps to enforce the conservation of mass.
通常用于测试流体-气弹性结构相互作用数值方法的基准问题依赖于使用人工求解方法构建的简单示例。在本研究中,我们发现这些例子不足以证明该方法的性能,尤其是在以基元或基元混合公式编写孔弹性系统时,以及孔弹性结构的动力学仅由流体的动态载荷驱动时(这在生物医学应用中经常出现)。在这种情况下,对结构的唯一作用力来自流体与结构界面上流体的相互作用,耦合条件被施加在该界面上。其中一个条件是强制质量守恒的运动学条件。如果不能准确满足这一条件,所产生的动力学结果可能会导致整个域的结果非常不准确。我们提出了三个基准问题:例 1 基于人工求解方法;例 2 基于地质力学中使用的参数;例 3 是使用血液动力学参数的基准问题。通过这些例子,我们测试了原始公式、原始混合公式和双重混合公式的性能。虽然所有方法在前两个示例中都表现良好,但在流体和固体密度相当、结构动力学完全由流体载荷驱动的示例 3 中,原始公式和原始混合公式表现出较大误差。为了恢复精度,我们建议使用带有惩罚项的基元和基元混合方法,这有助于强制执行质量守恒。
{"title":"Mass conservation in the validation of fluid-poroelastic structure interaction solvers","authors":"","doi":"10.1016/j.amc.2024.129081","DOIUrl":"10.1016/j.amc.2024.129081","url":null,"abstract":"<div><div>Benchmark problems commonly used to test numerical methods for fluid-poroelastic structure interaction often rely on simple examples constructed using the method of manufactured solutions. In this work, we show that such examples are not adequate to demonstrate the performance of the method, especially in cases when the poroelastic system is written in the primal or primal-mixed formulation, and when the dynamics of the poroelastic structure are driven only by dynamic loading from the fluid, which often occurs in biomedical applications. In those cases, the only forcing on the structure comes from the interaction with the fluid at the fluid-structure interface, where the coupling conditions are imposed. One of those conditions is a kinematic condition which enforces the conservation of mass. If this condition is not accurately satisfied, the resulting dynamics might lead to highly inaccurate results in the entire domain. We present three benchmark problems: Example 1 is based on the method of manufactured solutions; Example 2 is based on parameters used in geomechanics; and Example 3 is a benchmark problem with parameters from hemodynamics. Using these examples, we test the performance of the primal, primal-mixed and dual-mixed formulations. While all methods perform well in the first two examples, the primal and primal-mixed formulations exhibit large errors in Example 3, where the densities of the fluid and solid are comparable, and the structure dynamics is purely driven by the fluid loading. To recover the accuracy, we propose to use the primal and primal-mixed methods with a penalty term, which helps to enforce the conservation of mass.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of cooperation with asymmetric rewards 奖励不对称情况下的合作演变
IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-27 DOI: 10.1016/j.amc.2024.129075
Rewards, as a form of positive reinforcement, effectively encourage cooperation. In this paper, we study a multi-population prisoner's dilemma game with asymmetric rewards, where agents in the same population play prisoner's dilemma game, and agents from the giver population can reward agents from the recipient population only if they make the same choice. In well-mixed populations, asymmetric rewards can facilitate cooperation. Similarly, asymmetric rewards on the regular square lattice can effectively prevent complete defection. In both well-mixed and structured populations, seemingly disadvantageous cooperative givers play an important role in the maintenance and spread of cooperation. Especially on lattice, cooperative givers with asymmetric rewards can be active in the system through diverse cases of cyclic dominance. Our findings provide deeper insights into the impact of asymmetry on cooperative behavior and the development of altruistic behavior in real-world scenarios.
奖励作为一种正强化,能有效鼓励合作。在本文中,我们研究了一种具有非对称奖励的多种群囚徒困境博弈。在这种博弈中,同一种群中的代理人玩囚徒困境博弈,只有当施予者种群中的代理人做出相同选择时,才能奖励接受者种群中的代理人。在混合良好的群体中,非对称奖励可以促进合作。同样,规则方格上的非对称奖励也能有效防止完全叛逃。无论是在混合良好的种群中,还是在结构良好的种群中,看似不利的合作给予者在合作的维持和传播中都扮演着重要角色。特别是在网格上,具有不对称回报的合作给予者可以通过不同的循环优势情况活跃在系统中。我们的研究结果让我们更深入地了解了不对称对合作行为的影响,以及现实世界中利他行为的发展。
{"title":"Evolution of cooperation with asymmetric rewards","authors":"","doi":"10.1016/j.amc.2024.129075","DOIUrl":"10.1016/j.amc.2024.129075","url":null,"abstract":"<div><div>Rewards, as a form of positive reinforcement, effectively encourage cooperation. In this paper, we study a multi-population prisoner's dilemma game with asymmetric rewards, where agents in the same population play prisoner's dilemma game, and agents from the giver population can reward agents from the recipient population only if they make the same choice. In well-mixed populations, asymmetric rewards can facilitate cooperation. Similarly, asymmetric rewards on the regular square lattice can effectively prevent complete defection. In both well-mixed and structured populations, seemingly disadvantageous cooperative givers play an important role in the maintenance and spread of cooperation. Especially on lattice, cooperative givers with asymmetric rewards can be active in the system through diverse cases of cyclic dominance. Our findings provide deeper insights into the impact of asymmetry on cooperative behavior and the development of altruistic behavior in real-world scenarios.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A robust shape model for blood vessels analysis 用于血管分析的稳健形状模型
IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-26 DOI: 10.1016/j.amc.2024.129078
The availability of digital twins for the cardiovascular system will enable insightful computational tools both for research and clinical practice. This, however, demands robust and well defined models and methods for the different steps involved in the process. We present a vessel coordinate system (VCS) that enables the unambiguous definition of locations in a vessel section, by adapting the idea of cylindrical coordinates to the vessel geometry. Using the VCS model, point correspondence can be defined among different samples of a cohort, allowing data transfer, quantitative comparison, shape coregistration or population analysis. Furthermore, the VCS model allows for the generation of specific meshes (e.g. cylindrical grids, OGrids) necessary for an accurate reconstruction of the geometries used in fluid simulations. We provide the technical details for coordinates computation and discuss the assumptions taken to guarantee that they are well defined. The VCS model is tested in a series of applications. We present a robust, low dimensional, patient specific vascular model and use it to study phenotype variability analysis of the thoracic aorta within a cohort of patients. Point correspondence is exploited to build an haemodynamics atlas of the aorta for the same cohort. The atlas originates from fluid simulations (Navier-Stokes with Finite Volume Method) conducted using OpenFOAMv10. We finally present a relevant discussion on the VCS model, which covers its impact in important areas such as shape modeling and computer fluids dynamics (CFD).
心血管系统数字双胞胎的出现,将为研究和临床实践提供具有洞察力的计算工具。然而,这就要求对这一过程中涉及的不同步骤采用稳健、定义明确的模型和方法。我们提出了一种血管坐标系(VCS),通过将圆柱坐标的概念应用于血管几何,该坐标系能够明确定义血管截面中的位置。使用血管坐标系模型,可以在队列的不同样本之间定义点对应关系,从而进行数据传输、定量比较、形状核心注册或群体分析。此外,VCS 模型还可以生成特定的网格(如圆柱网格、OGrids),这些网格是精确重建流体模拟中使用的几何图形所必需的。我们提供了坐标计算的技术细节,并讨论了保证坐标定义明确的假设条件。我们在一系列应用中对 VCS 模型进行了测试。我们提出了一个稳健、低维、针对特定患者的血管模型,并将其用于研究一组患者胸主动脉的表型变异性分析。利用点对应关系,为同一队列的患者建立主动脉血流动力学图谱。该图集源于使用 OpenFOAMv10 进行的流体模拟(纳维-斯托克斯有限体积法)。 最后,我们对 VCS 模型进行了相关讨论,涵盖了其在形状建模和计算机流体动力学(CFD)等重要领域的影响。
{"title":"A robust shape model for blood vessels analysis","authors":"","doi":"10.1016/j.amc.2024.129078","DOIUrl":"10.1016/j.amc.2024.129078","url":null,"abstract":"<div><div>The availability of digital twins for the cardiovascular system will enable insightful computational tools both for research and clinical practice. This, however, demands robust and well defined models and methods for the different steps involved in the process. We present a vessel coordinate system (VCS) that enables the unambiguous definition of locations in a vessel section, by adapting the idea of cylindrical coordinates to the vessel geometry. Using the VCS model, point correspondence can be defined among different samples of a cohort, allowing data transfer, quantitative comparison, shape coregistration or population analysis. Furthermore, the VCS model allows for the generation of specific meshes (e.g. cylindrical grids, OGrids) necessary for an accurate reconstruction of the geometries used in fluid simulations. We provide the technical details for coordinates computation and discuss the assumptions taken to guarantee that they are well defined. The VCS model is tested in a series of applications. We present a robust, low dimensional, patient specific vascular model and use it to study phenotype variability analysis of the thoracic aorta within a cohort of patients. Point correspondence is exploited to build an haemodynamics atlas of the aorta for the same cohort. The atlas originates from fluid simulations (Navier-Stokes with Finite Volume Method) conducted using OpenFOAMv10. We finally present a relevant discussion on the VCS model, which covers its impact in important areas such as shape modeling and computer fluids dynamics (CFD).</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient spectral element method for the Euler equations on unbounded domains 无界域上欧拉方程的高效谱元法
IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-26 DOI: 10.1016/j.amc.2024.129080
Mitigating the impact of waves leaving a numerical domain has been a persistent challenge in numerical modeling. Reducing wave reflection at the domain boundary is crucial for accurate simulations. Absorbing layers, while common, often incur significant computational costs. This paper introduces an efficient application of a Legendre-Laguerre basis for absorbing layers for two-dimensional non-linear compressible Euler equations. The method couples a spectral-element bounded domain with a semi-infinite region, employing a tensor product of Lagrange and scaled Laguerre basis functions. Semi-infinite elements are used in the absorbing layer with Rayleigh damping. In comparison to existing methods with similar absorbing layer extensions, this approach, a pioneering application to the Euler equations of compressible and stratified flows, demonstrates substantial computational savings. The study marks the first application of semi-infinite elements to mitigate wave reflection in the solution of the Euler equations, particularly in nonhydrostatic atmospheric modeling. A comprehensive set of tests demonstrates the method's versatility for general systems of conservation laws, with a focus on its effectiveness in damping vertically propagating mountain gravity waves, a benchmark for atmospheric models. Across all tests, the model presented in this paper consistently exhibits notable performance improvements compared to a traditional Rayleigh damping approach.
减轻波浪离开数值域的影响一直是数值建模中的一个难题。减少波在域边界的反射对精确模拟至关重要。吸收层虽然常见,但往往会产生大量计算成本。本文介绍了一种针对二维非线性可压缩欧拉方程吸收层的 Legendre-Laguerre 基的高效应用。该方法采用拉格朗日和缩放拉盖尔基函数的张量乘积,将谱元有界域与半无限域结合起来。半无限元素用于具有瑞利阻尼的吸收层。与采用类似吸收层扩展的现有方法相比,这种方法是对可压缩和分层流欧拉方程的开创性应用,大大节省了计算量。这项研究标志着在欧拉方程求解过程中,特别是在非静水压大气建模中,首次应用半无限元素来减少波反射。一组全面的测试证明了该方法在一般守恒定律系统中的通用性,重点是其在阻尼垂直传播的山地重力波(大气模型的基准)中的有效性。在所有测试中,与传统的瑞利阻尼方法相比,本文介绍的模型始终表现出显著的性能改进。
{"title":"Efficient spectral element method for the Euler equations on unbounded domains","authors":"","doi":"10.1016/j.amc.2024.129080","DOIUrl":"10.1016/j.amc.2024.129080","url":null,"abstract":"<div><div>Mitigating the impact of waves leaving a numerical domain has been a persistent challenge in numerical modeling. Reducing wave reflection at the domain boundary is crucial for accurate simulations. Absorbing layers, while common, often incur significant computational costs. This paper introduces an efficient application of a Legendre-Laguerre basis for absorbing layers for two-dimensional non-linear compressible Euler equations. The method couples a spectral-element bounded domain with a semi-infinite region, employing a tensor product of Lagrange and scaled Laguerre basis functions. Semi-infinite elements are used in the absorbing layer with Rayleigh damping. In comparison to existing methods with similar absorbing layer extensions, this approach, a pioneering application to the Euler equations of compressible and stratified flows, demonstrates substantial computational savings. The study marks the first application of semi-infinite elements to mitigate wave reflection in the solution of the Euler equations, particularly in nonhydrostatic atmospheric modeling. A comprehensive set of tests demonstrates the method's versatility for general systems of conservation laws, with a focus on its effectiveness in damping vertically propagating mountain gravity waves, a benchmark for atmospheric models. Across all tests, the model presented in this paper consistently exhibits notable performance improvements compared to a traditional Rayleigh damping approach.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The equivalent conditions for norm of a Hilbert-type integral operator with a combination kernel and its applications 具有组合核的希尔伯特型积分算子的规范等价条件及其应用
IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-24 DOI: 10.1016/j.amc.2024.129076
<div><div>Introducing adaptation parameters <span><math><mi>σ</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, formal parameters <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>,</mo><mi>κ</mi><mo>,</mo><mi>τ</mi></math></span>, and type parameters <span><math><mi>μ</mi><mo>,</mo><mi>ν</mi></math></span>, the integration operator is defined as <span><math><mi>T</mi><mo>:</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>p</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>μ</mi><mover><mrow><mi>σ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo><mo>→</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>p</mi><mi>ν</mi><mover><mrow><mi>σ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span>, <span><math><mi>T</mi><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup><mo>+</mo><mi>κ</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup><mo>+</mo><mi>τ</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>4</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup></mrow></mfrac><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>. Using the weight function method, a general Hilbert-type integral inequality is obtained, thereby proving the boundedness of the operator. The constant factor of the general Hilbert-type inequality is the best possible if and only if the adaptation parameters satisfy <span><math><mi>σ</mi><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. From this, the formula for calculating the operator norm is obtained. In terms of application, some results from the references have been
引入适应参数 σ,σ1、形式参数 λi(i=1,2,3,4),κ,τ 和类型参数 μ,ν,积分算子定义为 T:Lpp(1-μσˆ)-1(R+)→Lppνσˆ-1(R+),Tf(y)=∫R+eλ1xμyν+κe-λ2xμyνeλ3xμyν+τe-λ4xμyνf(x)dx,y∈R+。利用权函数方法,可以得到一般希尔伯特型积分不等式,从而证明算子的有界性。只有当且仅当适应参数满足 σ=σ1 时,一般希尔伯特型不等式的常数因子才是最好的。由此可以得到算子规范的计算公式。在应用方面,通过讨论形式参数和类型参数的结合,巩固了参考文献中的一些成果,并推导出许多不同类型和形式的新算子不等式。
{"title":"The equivalent conditions for norm of a Hilbert-type integral operator with a combination kernel and its applications","authors":"","doi":"10.1016/j.amc.2024.129076","DOIUrl":"10.1016/j.amc.2024.129076","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Introducing adaptation parameters &lt;span&gt;&lt;math&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, formal parameters &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, and type parameters &lt;span&gt;&lt;math&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, the integration operator is defined as &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˆ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˆ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Using the weight function method, a general Hilbert-type integral inequality is obtained, thereby proving the boundedness of the operator. The constant factor of the general Hilbert-type inequality is the best possible if and only if the adaptation parameters satisfy &lt;span&gt;&lt;math&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. From this, the formula for calculating the operator norm is obtained. In terms of application, some results from the references have been ","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signed total Roman domination and domatic numbers in graphs 图表中的罗马人统治总数和统治人数签名
IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-24 DOI: 10.1016/j.amc.2024.129074
<div><div>A signed total Roman dominating function (STRDF) on a graph <em>G</em> is a function <span><math><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⟶</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span> satisfying (i) <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></mrow></msub><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mn>1</mn></math></span> for each vertex <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and its neighborhood <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in <em>G</em> and, (ii) every vertex <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, there exists a vertex <span><math><mi>v</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> with <span><math><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>2</mn></math></span>. The minimum number <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> among all STRDFs <em>f</em> on <em>G</em> is denoted by <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. A set <span><math><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></math></span> of distinct STRDFs on <em>G</em> is called a signed total Roman dominating family on <em>G</em> if <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span> for each <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We use <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to denote the maximum number of functions among all signed total Roman dominating families on <em>G</em>. Our purpose in this paper is to examine the effects on <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> when <em>G</em> is modified by removing or subdividing an edge. In addition, we determine the number <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>R</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for the case that <em>G</em> is a complete g
图 G 上的有符号总罗马占优函数 (STRDF) 是一个函数 f:V(G)⟶{-1,1,2},满足:(i) 对于 G 中的每个顶点 ux∈V(G) 及其邻域 NG(u),∑x∈NG(u)f(x)≥1;(ii) f(u)=-1 的每个顶点 u∈V(G),都存在 f(v)=2 的顶点 v∈NG(u)。在 G 上的所有 STRDF f 中,∑u∈V(G)f(u) 的最小数目用 γstR(G) 表示。如果对于每个 u∈V(G),∑i=1dfi(u)≤1,则 G 上不同 STRDF 的集合 {f1,...,fd}称为 G 上的有符号总罗马支配族。我们用 dstR(G) 表示 G 上所有有符号罗马支配族中函数的最大数目。本文的目的是研究当通过删除或细分一条边来修改 G 时对γstR(G) 的影响。此外,我们还确定了 G 是完整图或二叉图时的 dstR(G) 数。
{"title":"Signed total Roman domination and domatic numbers in graphs","authors":"","doi":"10.1016/j.amc.2024.129074","DOIUrl":"10.1016/j.amc.2024.129074","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A signed total Roman dominating function (STRDF) on a graph &lt;em&gt;G&lt;/em&gt; is a function &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;⟶&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; satisfying (i) &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; for each vertex &lt;span&gt;&lt;math&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and its neighborhood &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; in &lt;em&gt;G&lt;/em&gt; and, (ii) every vertex &lt;span&gt;&lt;math&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, there exists a vertex &lt;span&gt;&lt;math&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. The minimum number &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; among all STRDFs &lt;em&gt;f&lt;/em&gt; on &lt;em&gt;G&lt;/em&gt; is denoted by &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. A set &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; of distinct STRDFs on &lt;em&gt;G&lt;/em&gt; is called a signed total Roman dominating family on &lt;em&gt;G&lt;/em&gt; if &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; for each &lt;span&gt;&lt;math&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. We use &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; to denote the maximum number of functions among all signed total Roman dominating families on &lt;em&gt;G&lt;/em&gt;. Our purpose in this paper is to examine the effects on &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; when &lt;em&gt;G&lt;/em&gt; is modified by removing or subdividing an edge. In addition, we determine the number &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; for the case that &lt;em&gt;G&lt;/em&gt; is a complete g","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Event-triggered sampling-based singularity-free fixed-time control for nonlinear systems subject to input saturation and unknown control directions 受输入饱和和未知控制方向影响的非线性系统的基于事件触发采样的无奇点固定时间控制
IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-16 DOI: 10.1016/j.amc.2024.129070

In this paper, the issue of event-triggered fixed-time tracking control is investigated for a class of nonlinear systems subject to unknown control directions (UCDs) and asymmetric input saturation. Firstly, to cope with the design challenge imposed by nondifferential saturation nonlinearity in the system, the asymmetric saturation function is approached by introducing a smooth nonlinear function with respect to the control input signal. Secondly, a variable separation technique lemma is developed to remove the restrictive growth conditions that must be fulfilled by the nonlinear functions, and a new practically fixed-time stability lemma with more accurate upper-bound estimate of the settling time is put forward by means of the Beta function. Then, a technical lemma regarding a class of type-B Nussbaum functions (NFs) with unique properties is introduced, which avoids specific NFs-based complex stability analysis. Moreover, in compensation for the sampling error incurred by the event-triggered mechanism under UCDs, an adaptive law is skillfully constructed to co-design the fixed-time control law and the event-triggered mechanism. The results show that the controlled system is practically fixed-time stable (PFxTS), the tracking error can converge to a small neighborhood of the origin in a fixed time, and the saturation constraint is satisfied while reducing the communication burden. Finally, the effectiveness of the practically fixed-time stability criterion and control method developed in this study are verified by two simulation examples.

本文针对一类存在未知控制方向(UCD)和非对称输入饱和的非线性系统,研究了事件触发固定时间跟踪控制问题。首先,为了应对系统中的非差分饱和非线性所带来的设计挑战,通过引入与控制输入信号有关的平滑非线性函数来处理非对称饱和函数。其次,建立了一个变量分离技术两用例,以消除非线性函数必须满足的限制性增长条件,并通过 Beta 函数提出了一个新的实际固定时间稳定性两用例,该两用例具有更精确的沉降时间上限估计。然后,引入了关于一类具有独特性质的 B 型努斯鲍姆函数(NFs)的技术公 式,从而避免了基于 NFs 的特定复杂稳定性分析。此外,为补偿事件触发机制在 UCDs 下产生的采样误差,巧妙地构建了自适应法则,以共同设计固定时间控制法则和事件触发机制。结果表明,受控系统实际上是固定时间稳定(PFxTS)的,跟踪误差可以在固定时间内收敛到原点的一个小邻域,并且在减少通信负担的同时满足了饱和约束。最后,本研究开发的实际固定时间稳定性准则和控制方法的有效性通过两个仿真实例得到了验证。
{"title":"Event-triggered sampling-based singularity-free fixed-time control for nonlinear systems subject to input saturation and unknown control directions","authors":"","doi":"10.1016/j.amc.2024.129070","DOIUrl":"10.1016/j.amc.2024.129070","url":null,"abstract":"<div><p>In this paper, the issue of event-triggered fixed-time tracking control is investigated for a class of nonlinear systems subject to unknown control directions (UCDs) and asymmetric input saturation. Firstly, to cope with the design challenge imposed by nondifferential saturation nonlinearity in the system, the asymmetric saturation function is approached by introducing a smooth nonlinear function with respect to the control input signal. Secondly, a variable separation technique lemma is developed to remove the restrictive growth conditions that must be fulfilled by the nonlinear functions, and a new practically fixed-time stability lemma with more accurate upper-bound estimate of the settling time is put forward by means of the Beta function. Then, a technical lemma regarding a class of type-B Nussbaum functions (NFs) with unique properties is introduced, which avoids specific NFs-based complex stability analysis. Moreover, in compensation for the sampling error incurred by the event-triggered mechanism under UCDs, an adaptive law is skillfully constructed to co-design the fixed-time control law and the event-triggered mechanism. The results show that the controlled system is practically fixed-time stable (PFxTS), the tracking error can converge to a small neighborhood of the origin in a fixed time, and the saturation constraint is satisfied while reducing the communication burden. Finally, the effectiveness of the practically fixed-time stability criterion and control method developed in this study are verified by two simulation examples.</p></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of α-fractal functions without boundary point conditions on the Sierpiński gasket 西尔皮斯基垫圈上无边界点条件的 α 分形函数分析
IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-16 DOI: 10.1016/j.amc.2024.129072

This note aims to manifest the existence of a class of α-fractal interpolation functions (α-FIFs) without boundary point conditions at the m-th level in the space consisting of continuous functions on the Sierpiński gasket (SG). Furthermore, we add the existence of the same class in the Lp space and energy space on SG. Under certain hypotheses, we show the existence of α-FIFs without boundary point conditions in the Hölder space and oscillation space on SG, and also calculate the fractal dimensions of their graphs.

本论文旨在证明在西尔潘斯基垫圈(SG)上由连续函数组成的空间中,存在一类在第 m 层上不带边界点条件的 α 分形插值函数(α-FIFs)。此外,我们还补充说明了在 SG 上的 Lp 空间和能量空间中存在同一类函数。在一定的假设条件下,我们证明了赫尔德空间和 SG 上振荡空间中无边界点条件的 α-FIFs 的存在,并计算了它们图形的分形维数。
{"title":"Analysis of α-fractal functions without boundary point conditions on the Sierpiński gasket","authors":"","doi":"10.1016/j.amc.2024.129072","DOIUrl":"10.1016/j.amc.2024.129072","url":null,"abstract":"<div><p>This note aims to manifest the existence of a class of <em>α</em>-fractal interpolation functions (<em>α</em>-FIFs) without boundary point conditions at the <em>m</em>-th level in the space consisting of continuous functions on the Sierpiński gasket (<em>SG</em>). Furthermore, we add the existence of the same class in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> space and energy space on <em>SG</em>. Under certain hypotheses, we show the existence of <em>α</em>-FIFs without boundary point conditions in the Hölder space and oscillation space on <em>SG</em>, and also calculate the fractal dimensions of their graphs.</p></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient finite element strategy using enhanced high-order and second-derivative-free variants of Newton's method 使用牛顿法的增强型高阶和无二次衍生变体的高效有限元策略
IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-13 DOI: 10.1016/j.amc.2024.129058

In this work, we propose a stable finite element approximation by extending higher-order Newton's method to the multidimensional case for solving nonlinear systems of partial differential equations. This approach relies solely on the evaluation of Jacobian matrices and residuals, eliminating the need for computing higher-order derivatives. Achieving third and fifth-order convergence, it ensures stability and allows for significantly larger time steps compared to explicit methods. We thoroughly address accuracy and convergence, focusing on the singular p-Laplacian problem and the time-dependent lid-driven cavity benchmark. A globalized variant incorporating a continuation technique is employed to effectively handle high Reynolds number regimes. Through two-dimensional and three-dimensional numerical experiments, we demonstrate that the improved cubically convergent variant outperforms others, leading to substantial computational savings, notably halving the computational cost for the lid-driven cavity test at large Reynolds numbers.

在这项工作中,我们提出了一种稳定的有限元近似方法,将高阶牛顿法扩展到多维情况下,用于求解非线性偏微分方程系统。这种方法仅依赖于雅各布矩阵和残差的评估,无需计算高阶导数。与显式方法相比,它能实现三阶和五阶收敛,确保稳定性,并允许显著增大时间步长。我们深入探讨了精度和收敛性问题,重点是奇异 p-Laplacian 问题和随时间变化的顶盖驱动空腔基准。我们采用了包含延续技术的全局化变体,以有效处理高雷诺数情况。通过二维和三维数值实验,我们证明了改进的立方收敛变体优于其他变体,从而节省了大量计算成本,尤其是在大雷诺数下,将盖子驱动空腔测试的计算成本降低了一半。
{"title":"Efficient finite element strategy using enhanced high-order and second-derivative-free variants of Newton's method","authors":"","doi":"10.1016/j.amc.2024.129058","DOIUrl":"10.1016/j.amc.2024.129058","url":null,"abstract":"<div><p>In this work, we propose a stable finite element approximation by extending higher-order Newton's method to the multidimensional case for solving nonlinear systems of partial differential equations. This approach relies solely on the evaluation of Jacobian matrices and residuals, eliminating the need for computing higher-order derivatives. Achieving third and fifth-order convergence, it ensures stability and allows for significantly larger time steps compared to explicit methods. We thoroughly address accuracy and convergence, focusing on the singular <em>p</em>-Laplacian problem and the time-dependent lid-driven cavity benchmark. A globalized variant incorporating a continuation technique is employed to effectively handle high Reynolds number regimes. Through two-dimensional and three-dimensional numerical experiments, we demonstrate that the improved cubically convergent variant outperforms others, leading to substantial computational savings, notably halving the computational cost for the lid-driven cavity test at large Reynolds numbers.</p></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the dynamics of a linear-hyperbolic population model with Allee effect and almost sure extinction 论具有阿利效应和几乎肯定灭绝的线性-双曲线种群模型的动态变化
IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-12 DOI: 10.1016/j.amc.2024.129005

This paper considers a biological model in which two stages of the population, adults and preadults, are modeled by a Beverton-Holt type function and a logistic-type function. Two new models are proposed, each with an additional parameter representing the compensation. This new parameter is introduced in adult and juvenile populations. As a result, the Allee effect is observed in both models. The scenario of almost sure extinction can appear when the dynamic is chaotic enough.

本文研究了一个生物模型,在该模型中,种群的两个阶段--成虫和幼虫--分别由一个贝弗顿-霍尔特型函数和一个逻辑型函数来模拟。本文提出了两个新模型,每个模型都有一个代表补偿的附加参数。在成体和幼体种群中引入了这一新参数。结果,在这两个模型中都观察到了阿利效应。当动态足够混乱时,几乎肯定会出现灭绝的情况。
{"title":"On the dynamics of a linear-hyperbolic population model with Allee effect and almost sure extinction","authors":"","doi":"10.1016/j.amc.2024.129005","DOIUrl":"10.1016/j.amc.2024.129005","url":null,"abstract":"<div><p>This paper considers a biological model in which two stages of the population, adults and preadults, are modeled by a Beverton-Holt type function and a logistic-type function. Two new models are proposed, each with an additional parameter representing the compensation. This new parameter is introduced in adult and juvenile populations. As a result, the Allee effect is observed in both models. The scenario of almost sure extinction can appear when the dynamic is chaotic enough.</p></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Mathematics and Computation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1