Ferroptosis in space: How microgravity alters iron homeostasis

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE Acta Astronautica Pub Date : 2025-01-22 DOI:10.1016/j.actaastro.2025.01.049
Nithyasree Sivasubramanian, Kamalesh Dattaram Mumbrekar, Sudharshan Prabhu
{"title":"Ferroptosis in space: How microgravity alters iron homeostasis","authors":"Nithyasree Sivasubramanian, Kamalesh Dattaram Mumbrekar, Sudharshan Prabhu","doi":"10.1016/j.actaastro.2025.01.049","DOIUrl":null,"url":null,"abstract":"As humanity ventures into space, understanding the effects of microgravity on fundamental cellular, molecular, and physiological processes is essential. Research in this area not only addresses the challenges faced during space exploration but also has the potential to lead to novel discoveries. Microgravity research in the field of biological sciences has gained significant importance as astronauts, cosmonauts, and taikonauts experience various pathological conditions while living under gravity levels vastly different from that on Earth. This review explores insights drawn from space missions and ground-based microgravity simulation models, highlighting changes in iron utilization, storage, transport, recycling, redox signaling, and oxidative stress under microgravity conditions. We aim to elucidate how these alterations may influence the risk of ferroptosis either by exacerbating or mitigating it during space missions. By investigating the effects of microgravity, we gain a deeper understanding of the role of iron and other contributing factors in ferroptotic cell death in space environments. This comprehensive review, therefore, examines the complex interplay between microgravity and iron dynamics, with particular focus on its implication for ferroptosis.","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"111 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.actaastro.2025.01.049","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

As humanity ventures into space, understanding the effects of microgravity on fundamental cellular, molecular, and physiological processes is essential. Research in this area not only addresses the challenges faced during space exploration but also has the potential to lead to novel discoveries. Microgravity research in the field of biological sciences has gained significant importance as astronauts, cosmonauts, and taikonauts experience various pathological conditions while living under gravity levels vastly different from that on Earth. This review explores insights drawn from space missions and ground-based microgravity simulation models, highlighting changes in iron utilization, storage, transport, recycling, redox signaling, and oxidative stress under microgravity conditions. We aim to elucidate how these alterations may influence the risk of ferroptosis either by exacerbating or mitigating it during space missions. By investigating the effects of microgravity, we gain a deeper understanding of the role of iron and other contributing factors in ferroptotic cell death in space environments. This comprehensive review, therefore, examines the complex interplay between microgravity and iron dynamics, with particular focus on its implication for ferroptosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
期刊最新文献
Ferroptosis in space: How microgravity alters iron homeostasis Emission spectroscopy and surface temperature analysis from Hayabusa2 sample return observation Studies on the effect of working fluid and the geometric design of airfoils on the aerodynamic performance of air vehicles operating in Martian atmosphere Generalized Gaussian smoothing homotopy method for solving nonlinear optimal control problems Fast recovery mode for micro-meteoroid impacts: A LISA mission study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1