Regina Meneses Gonçalves, Bruna Estéfani Dutra Monges, Karen Garcia Nogueira Oshiro, Elizabete de Souza Cândido, João Pedro Farias Pimentel, Octávio Luiz Franco, Marlon Henrique Cardoso
{"title":"Advantages and Challenges of Using Antimicrobial Peptides in Synergism with Antibiotics for Treating Multidrug-Resistant Bacteria.","authors":"Regina Meneses Gonçalves, Bruna Estéfani Dutra Monges, Karen Garcia Nogueira Oshiro, Elizabete de Souza Cândido, João Pedro Farias Pimentel, Octávio Luiz Franco, Marlon Henrique Cardoso","doi":"10.1021/acsinfecdis.4c00702","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug-resistant bacteria (MDR) have become a global threat, impairing positive outcomes in many cases of infectious diseases. Treating bacterial infections with antibiotic monotherapy has become a huge challenge in modern medicine. Although conventional antibiotics can be efficient against many bacteria, there is still a need to develop antimicrobial agents that act against MDR bacteria. Bioactive peptides, particularly effective against specific types of bacteria, are recognized for their selective and effective action against microorganisms and, at the same time, are relatively safe and well tolerated. Therefore, a growing number of works have proposed the use of antimicrobial peptides (AMPs) in synergism with commercial antibiotics as an alternative therapeutic strategy. This review provides an overview of the critical parameters for using AMPs in synergism with antibiotics as well as addressing the strengths and weaknesses of this combination therapy using <i>in vitro</i> and <i>in vivo</i> models of infection. We also cover the challenges and perspectives of using this approach for clinical practice and the advantages of applying artificial intelligence strategies to predict the most promising combination therapies between AMPs and antibiotics.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00702","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multidrug-resistant bacteria (MDR) have become a global threat, impairing positive outcomes in many cases of infectious diseases. Treating bacterial infections with antibiotic monotherapy has become a huge challenge in modern medicine. Although conventional antibiotics can be efficient against many bacteria, there is still a need to develop antimicrobial agents that act against MDR bacteria. Bioactive peptides, particularly effective against specific types of bacteria, are recognized for their selective and effective action against microorganisms and, at the same time, are relatively safe and well tolerated. Therefore, a growing number of works have proposed the use of antimicrobial peptides (AMPs) in synergism with commercial antibiotics as an alternative therapeutic strategy. This review provides an overview of the critical parameters for using AMPs in synergism with antibiotics as well as addressing the strengths and weaknesses of this combination therapy using in vitro and in vivo models of infection. We also cover the challenges and perspectives of using this approach for clinical practice and the advantages of applying artificial intelligence strategies to predict the most promising combination therapies between AMPs and antibiotics.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.