Extracellular electron shuttles induced transformation and mobilization of Fe/As with the occurrence of biogenic vivianite.

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecotoxicology and Environmental Safety Pub Date : 2025-01-23 DOI:10.1016/j.ecoenv.2025.117779
Jia Wang, Mengna Chen, Yalong Li, Yang Yang, Zuoming Xie
{"title":"Extracellular electron shuttles induced transformation and mobilization of Fe/As with the occurrence of biogenic vivianite.","authors":"Jia Wang, Mengna Chen, Yalong Li, Yang Yang, Zuoming Xie","doi":"10.1016/j.ecoenv.2025.117779","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms that utilize organic matter to reduce Fe oxides/hydroxides constitute the primary geochemical processes controlling the formation of high-arsenic (As) groundwater. Biogenic secondary iron minerals play a significant role in As migration. However, the influence of quinone electron shuttles and competitive anionic phosphate on this process has not been thoroughly studied. In this study, 10 mM phosphate effectively increased the growth and reproduction of the indigenous metal-reducing bacterium Bacillus D2201, ensuring high biomass participation in goethite reduction. Three forms of goethite (pure goethite [Gt], goethite with coprecipitated As [Gt-As], and goethite with adsorbed As [Gt*As]) were synthesized and reduced by strain D2201 to investigate the fate of As/Fe. The results showed that the amount of Fe(II) released and precipitated in the Gt-As group with the addition of 9,10-anthraquinone-2,6-disulfonic acid (AQDS) and phosphate was the highest. Various solid-phase analytical techniques revealed that a significant amount of dissolved Fe(II) precipitated and formed the secondary mineral vivianite owing to phosphate input. Vivianite formation was pH-dependent, with high pH levels inhibiting vivianite development. As migration in the Gt-As system exhibited desorption and re-adsorption phenomena. The total As content decreased by 59.0 %, 53.7 %, and 49.4 %, at pH 6.0, 7.0, and 8.0, respectively, compared to the maximum As content values. The As re-adsorption percentage in the Gt*As group was lower than that in the Gt-As group, with decreases of 30.2 %, 16 %, and 10.3 % at pH, 6.0, 7.0, and 8.0, respectively. The results indicated that phosphate and AQDS enhanced goethite bioreduction and facilitated the migration of As and Fe. However, the subsequent formation of secondary vivianite resulted in the re-fixation of As and Fe. Our research suggested that metal-reducing bacteria may not universally facilitate As migration from sediments to groundwater, as previously assumed. This study highlights the effects of phosphate, As doping methods, and pH levels on As migration and transformation and refines theories on microbiologically induced high-As groundwater formation.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"290 ","pages":"117779"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2025.117779","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microorganisms that utilize organic matter to reduce Fe oxides/hydroxides constitute the primary geochemical processes controlling the formation of high-arsenic (As) groundwater. Biogenic secondary iron minerals play a significant role in As migration. However, the influence of quinone electron shuttles and competitive anionic phosphate on this process has not been thoroughly studied. In this study, 10 mM phosphate effectively increased the growth and reproduction of the indigenous metal-reducing bacterium Bacillus D2201, ensuring high biomass participation in goethite reduction. Three forms of goethite (pure goethite [Gt], goethite with coprecipitated As [Gt-As], and goethite with adsorbed As [Gt*As]) were synthesized and reduced by strain D2201 to investigate the fate of As/Fe. The results showed that the amount of Fe(II) released and precipitated in the Gt-As group with the addition of 9,10-anthraquinone-2,6-disulfonic acid (AQDS) and phosphate was the highest. Various solid-phase analytical techniques revealed that a significant amount of dissolved Fe(II) precipitated and formed the secondary mineral vivianite owing to phosphate input. Vivianite formation was pH-dependent, with high pH levels inhibiting vivianite development. As migration in the Gt-As system exhibited desorption and re-adsorption phenomena. The total As content decreased by 59.0 %, 53.7 %, and 49.4 %, at pH 6.0, 7.0, and 8.0, respectively, compared to the maximum As content values. The As re-adsorption percentage in the Gt*As group was lower than that in the Gt-As group, with decreases of 30.2 %, 16 %, and 10.3 % at pH, 6.0, 7.0, and 8.0, respectively. The results indicated that phosphate and AQDS enhanced goethite bioreduction and facilitated the migration of As and Fe. However, the subsequent formation of secondary vivianite resulted in the re-fixation of As and Fe. Our research suggested that metal-reducing bacteria may not universally facilitate As migration from sediments to groundwater, as previously assumed. This study highlights the effects of phosphate, As doping methods, and pH levels on As migration and transformation and refines theories on microbiologically induced high-As groundwater formation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
期刊最新文献
Quantifying the sources and health risks of groundwater nitrate via dual NO isotopes and Monte Carlo simulations in a developed planting-breeding area. Edaphic factors mediate the response of nitrogen cycling and related enzymatic activities and functional genes to heavy metals: A review. Multi-metal mixture exposure and cognitive function in urban older adults: The mediation effects of thyroid hormones. Prenatal exposure to bisphenol A causes reproductive damage in F1 male rabbits due to inflammation and oxidative stress. Synergistic effects of allantoin and Achyranthes japonica-biochar profoundly alleviate lead toxicity during barley growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1