{"title":"Dual effects of exogenous ferulic acid bound in rice starch as 3D printable food ink: Structural fluidity and antimicrobial activity.","authors":"Yushi Li, Na Li, Siyu Yao, Haohao Hu, Beijia Wan, Zhengzong Wu, Huan Cheng, Dandan Li, Donghong Liu, Enbo Xu","doi":"10.1016/j.ijbiomac.2025.140262","DOIUrl":null,"url":null,"abstract":"<p><p>Starch-ferulic acid (FA) composites have been developed for medical and food fields, while little focus is caused on their use in functional products by 3D printing. In this work, dynamic high-pressure microfluidization was employed to treat starch at various concentrations, for preparing modified starch-FA composites. The high-performance liquid chromatography results showed that an increased starch concentration was conducive to a high yield of composite with enhanced binding of FA. Compared with pure starch and starch-FA mixture gel, the starch-FA composite gel possessed lower viscosity, with a dramatically reduced extrusion pressure in the 3D printing test. Furthermore, antimicrobial activity tests indicated that the starch-FA composite gel can inhibit the growth of microorganism for achieving a long storage period. Overall, we provide a biomaterial of starch-FA composite that can serve as both a 3D printing food ink and an edible, printable, active, and lightweight packaging ink.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"300 ","pages":"140262"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140262","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Starch-ferulic acid (FA) composites have been developed for medical and food fields, while little focus is caused on their use in functional products by 3D printing. In this work, dynamic high-pressure microfluidization was employed to treat starch at various concentrations, for preparing modified starch-FA composites. The high-performance liquid chromatography results showed that an increased starch concentration was conducive to a high yield of composite with enhanced binding of FA. Compared with pure starch and starch-FA mixture gel, the starch-FA composite gel possessed lower viscosity, with a dramatically reduced extrusion pressure in the 3D printing test. Furthermore, antimicrobial activity tests indicated that the starch-FA composite gel can inhibit the growth of microorganism for achieving a long storage period. Overall, we provide a biomaterial of starch-FA composite that can serve as both a 3D printing food ink and an edible, printable, active, and lightweight packaging ink.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.