Projecting future snow changes at kilometer scale for adaptation using machine learning and a CMIP6 multi-model ensemble

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-01-24 DOI:10.1016/j.scitotenv.2025.178606
Alessandro Damiani , Noriko N. Ishizaki , Sarah Feron , Raul R. Cordero
{"title":"Projecting future snow changes at kilometer scale for adaptation using machine learning and a CMIP6 multi-model ensemble","authors":"Alessandro Damiani ,&nbsp;Noriko N. Ishizaki ,&nbsp;Sarah Feron ,&nbsp;Raul R. Cordero","doi":"10.1016/j.scitotenv.2025.178606","DOIUrl":null,"url":null,"abstract":"<div><div>Assessing future snow cover changes is challenging because the high spatial resolution required is typically unavailable from climate models. This study, therefore, proposes an alternative approach to estimating snow changes by developing a super-spatial-resolution downscaling model of snow depth (SD) for Japan using a convolutional neural network (CNN)-based method, and by downscaling an ensemble of models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset. After assessing the coherence of the observed reference SD dataset with independent observations, we leveraged it to train the CNN downscaling model; following its evaluation, we applied the trained model to CMIP6 climate simulations. The downscaled mean ensemble reproduced the spatial distribution and seasonality of the reference observations. We found an average decrease in the snow-covered area by about 20 % in winter and 25 % in early spring, an altitude-dependent of the SD changes, and a delayed snow cover appearance by the middle of the 21st Century under a high emission scenario. Overall, the downscaling model captures physically plausible relationships, enables high-resolution assessments of future SD based on a multi-model ensemble, produces results consistent with regional climate models, and provides valuable insights into how future snow changes will affect winter tourism and water resources, highlighting its potential benefits for a wide range of adaptation studies.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"964 ","pages":"Article 178606"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725002402","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing future snow cover changes is challenging because the high spatial resolution required is typically unavailable from climate models. This study, therefore, proposes an alternative approach to estimating snow changes by developing a super-spatial-resolution downscaling model of snow depth (SD) for Japan using a convolutional neural network (CNN)-based method, and by downscaling an ensemble of models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset. After assessing the coherence of the observed reference SD dataset with independent observations, we leveraged it to train the CNN downscaling model; following its evaluation, we applied the trained model to CMIP6 climate simulations. The downscaled mean ensemble reproduced the spatial distribution and seasonality of the reference observations. We found an average decrease in the snow-covered area by about 20 % in winter and 25 % in early spring, an altitude-dependent of the SD changes, and a delayed snow cover appearance by the middle of the 21st Century under a high emission scenario. Overall, the downscaling model captures physically plausible relationships, enables high-resolution assessments of future SD based on a multi-model ensemble, produces results consistent with regional climate models, and provides valuable insights into how future snow changes will affect winter tourism and water resources, highlighting its potential benefits for a wide range of adaptation studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
In search of light: Estimating diffuse attenuation coefficient of downwelling irradiance and its variation in optically complex shallow water habitats using Sentinel-2 imagery. Sedimentary controls on arsenic distribution in meander-belt deposits of the Po Valley, Italy. Unveiling the impact of anthropogenic wastes on greenhouse gas emissions from the enigmatic mangroves of Indian Sundarban. Development and in-vitro assessment of novel oxygen-releasing feed additives to reduce enteric ruminant methane emissions. Analysis of potential human accumulation differences and mechanisms of environmental new flame retardants: Based on in vitro experiments and theoretical calculations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1