Large-capacity DNA vectors based on rolling circle amplification with multivalent aptamers delivery copper sulfide for the synergistic treatment of Cancer through chemo/Photothermal/Chemodynamic therapy in vitro

IF 3.8 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Inorganic Biochemistry Pub Date : 2025-01-17 DOI:10.1016/j.jinorgbio.2025.112831
Huan Du, Fang Wang, Ruyan Zhang, Yan Ma, Xiaobing Huo, Gan Ning, Xiufeng Wang, Ting Zhou, Guodong Zhang, Zhiqing Zhang
{"title":"Large-capacity DNA vectors based on rolling circle amplification with multivalent aptamers delivery copper sulfide for the synergistic treatment of Cancer through chemo/Photothermal/Chemodynamic therapy in vitro","authors":"Huan Du,&nbsp;Fang Wang,&nbsp;Ruyan Zhang,&nbsp;Yan Ma,&nbsp;Xiaobing Huo,&nbsp;Gan Ning,&nbsp;Xiufeng Wang,&nbsp;Ting Zhou,&nbsp;Guodong Zhang,&nbsp;Zhiqing Zhang","doi":"10.1016/j.jinorgbio.2025.112831","DOIUrl":null,"url":null,"abstract":"<div><div>Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMAL<sub>1</sub>Cu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL<sub>1</sub>) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMAL<sub>1</sub>Cu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy. Furthermore, the abundance of G-C of RMAL<sub>1</sub> enabled effective DOX encapsulation through π-π interactions to construct RMAL<sub>1</sub>Cu@DOX. The MA integrated into RMAL<sub>1</sub>Cu@DOX is pivotal in enhancing the targeting of tumors and in preventing non-specific release of CuS and DOX, enabling an integrated CT/PTT/CDT. Data indicate that 1 nM of RMAL<sub>1</sub>Cu could load 270 nM of DOX with an impressive loading capacity of 77 %, and modification with MA, its tumor-targeting ability was amplified by 51-fold and significantly bolstered in vitro imaging outcomes, and the synergistic killing of B16 was as 67.3 %. This innovative nanoplatform offers a comprehensive and holistic strategy for the treatment of malignant tumors.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"265 ","pages":"Article 112831"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016201342500011X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMAL1Cu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL1) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMAL1Cu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy. Furthermore, the abundance of G-C of RMAL1 enabled effective DOX encapsulation through π-π interactions to construct RMAL1Cu@DOX. The MA integrated into RMAL1Cu@DOX is pivotal in enhancing the targeting of tumors and in preventing non-specific release of CuS and DOX, enabling an integrated CT/PTT/CDT. Data indicate that 1 nM of RMAL1Cu could load 270 nM of DOX with an impressive loading capacity of 77 %, and modification with MA, its tumor-targeting ability was amplified by 51-fold and significantly bolstered in vitro imaging outcomes, and the synergistic killing of B16 was as 67.3 %. This innovative nanoplatform offers a comprehensive and holistic strategy for the treatment of malignant tumors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Inorganic Biochemistry
Journal of Inorganic Biochemistry 生物-生化与分子生物学
CiteScore
7.00
自引率
10.30%
发文量
336
审稿时长
41 days
期刊介绍: The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.
期刊最新文献
Graphical abstract TOC Graphical abstract TOC Contents continued Editorial Board RP-HPLC reveals the L-cysteine induced degradation of phenylmercuric acetate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1