Electrochemical aptasensor for the selective detection of vancomycin based on nanostructured "in-lab" printed electrodes.

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL Microchimica Acta Pub Date : 2025-01-25 DOI:10.1007/s00604-025-06952-1
Malek Bibani, Magdolna Casian, Bogdan Feier, Diana Bogdan, Oana Hosu-Stancioiu, Nadia Ktari, Rafik Kalfat, Cecilia Cristea
{"title":"Electrochemical aptasensor for the selective detection of vancomycin based on nanostructured \"in-lab\" printed electrodes.","authors":"Malek Bibani, Magdolna Casian, Bogdan Feier, Diana Bogdan, Oana Hosu-Stancioiu, Nadia Ktari, Rafik Kalfat, Cecilia Cristea","doi":"10.1007/s00604-025-06952-1","DOIUrl":null,"url":null,"abstract":"<p><p>A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites. The developed disposable aptasensor allowed label-free detection of VAN via electrochemical impedance spectroscopy (EIS) across a wide range of concentrations (50-1000 nM), with a limit of detection (LOD) of 1.721 nM. The aptasensor presented good selectivity against some commonly found interferences in human serum and milk and was successfully applied to the analysis of these samples.</p>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 2","pages":"107"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00604-025-06952-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites. The developed disposable aptasensor allowed label-free detection of VAN via electrochemical impedance spectroscopy (EIS) across a wide range of concentrations (50-1000 nM), with a limit of detection (LOD) of 1.721 nM. The aptasensor presented good selectivity against some commonly found interferences in human serum and milk and was successfully applied to the analysis of these samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纳米结构 "实验室内 "印刷电极的选择性检测万古霉素的电化学传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
期刊最新文献
Confined active area and aggregation kinetic-based AuNPs@PVP nanosensors for simultaneous colorimetric detection of cysteine and homocysteine as homologues in human urine and serum. Electrochemical aptasensor for the selective detection of vancomycin based on nanostructured "in-lab" printed electrodes. Preparation of CHS-Fe3O4@@ZIF-8 peroxidase-mimic with an ultra-thin hollow layer for ultrasensitive electrochemical detection of kanamycin. Aptamer-antibody sandwich immunosensor for electrochemical detection of FT4. Nanoenzyme-based sensors for the detection of anti-tumor drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1