Exploring potential targets and mechanisms of renal tissue damage caused by N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) through network toxicology and animal experiments: A case of chronic kidney disease.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-01-24 DOI:10.1016/j.scitotenv.2025.178626
Jun Pei, Jinpu Peng, Moudong Wu, Xiong Zhan, Dan Wang, Guohua Zhu, Wei Wang, Nini An, Xingyu Pan
{"title":"Exploring potential targets and mechanisms of renal tissue damage caused by N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) through network toxicology and animal experiments: A case of chronic kidney disease.","authors":"Jun Pei, Jinpu Peng, Moudong Wu, Xiong Zhan, Dan Wang, Guohua Zhu, Wei Wang, Nini An, Xingyu Pan","doi":"10.1016/j.scitotenv.2025.178626","DOIUrl":null,"url":null,"abstract":"<p><p>6-PPDQ is a new type of environmental contaminant contained in tire rubber. No studies have been reported on the potential targets and mechanisms of action of 6-PPDQ on renal tissue damage. In the present study, we used CKD as an example to explore the potential targets and biological mechanisms of renal injury caused by 6-PPDQ using Network toxicology and animal experiments. A total of 1361 6-PPDQ-related target genes were obtained from the CTD database. 17,296 CKD-related target genes were obtained through the GeneCards database. After intersecting the two, a total of 908 intersecting genes were obtained. Next, we constructed a PPI protein interaction network. Using different algorithms in Cytoscape software and \"Logistic regression analysis\", five key target genes were finally identified as NOTCH1, TP53, TNF, IL1B and IL6. We constructed a diagnostic model using five key target genes, and the ROC curves, calibration curves and DCA curves proved that the model has good diagnostic value. Molecular docking demonstrated high affinity between 6-PPDQ and five key target gene proteins. In animal experiments, repeated intraperitoneal injections of 6-PPDQ using different concentration gradients for 28 days revealed that the expression levels of five key target genes in renal tissues increased progressively with the increase of the concentration, and the damage to renal tissues was also aggravated. ssGSEA and animal experiments revealed a key role for activation of the MAPK signaling pathway. Finally, we also identified a significant correlation between five key target genes and the level of infiltration of multiple immune cells. In conclusion, these findings suggest that 6-PPDQ can cause damage to renal tissue and that the level of damage progressively increases with increasing concentration. Among them, NOTCH1, TP53, TNF, IL1B and IL6 may be its potential targets of action. Activation of the MAPK signaling pathway is a potential mechanism of action.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"964 ","pages":"178626"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2025.178626","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

6-PPDQ is a new type of environmental contaminant contained in tire rubber. No studies have been reported on the potential targets and mechanisms of action of 6-PPDQ on renal tissue damage. In the present study, we used CKD as an example to explore the potential targets and biological mechanisms of renal injury caused by 6-PPDQ using Network toxicology and animal experiments. A total of 1361 6-PPDQ-related target genes were obtained from the CTD database. 17,296 CKD-related target genes were obtained through the GeneCards database. After intersecting the two, a total of 908 intersecting genes were obtained. Next, we constructed a PPI protein interaction network. Using different algorithms in Cytoscape software and "Logistic regression analysis", five key target genes were finally identified as NOTCH1, TP53, TNF, IL1B and IL6. We constructed a diagnostic model using five key target genes, and the ROC curves, calibration curves and DCA curves proved that the model has good diagnostic value. Molecular docking demonstrated high affinity between 6-PPDQ and five key target gene proteins. In animal experiments, repeated intraperitoneal injections of 6-PPDQ using different concentration gradients for 28 days revealed that the expression levels of five key target genes in renal tissues increased progressively with the increase of the concentration, and the damage to renal tissues was also aggravated. ssGSEA and animal experiments revealed a key role for activation of the MAPK signaling pathway. Finally, we also identified a significant correlation between five key target genes and the level of infiltration of multiple immune cells. In conclusion, these findings suggest that 6-PPDQ can cause damage to renal tissue and that the level of damage progressively increases with increasing concentration. Among them, NOTCH1, TP53, TNF, IL1B and IL6 may be its potential targets of action. Activation of the MAPK signaling pathway is a potential mechanism of action.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Development and in-vitro assessment of novel oxygen-releasing feed additives to reduce enteric ruminant methane emissions. Corrigendum to "Maternal Zearalenone exposure impacted ovarian follicle formation and development of suckled offspring" [Sci. Total Environ. 788 (2021) 147792]. Modeling dissolved organic carbon export from water supply catchments in the northeastern United States. Tracing microplastics in marine fish: Ecological threats and human exposure in the Bay of Bengal. Assessing biochar's impact on greenhouse gas emissions, microbial biomass, and enzyme activities in agricultural soils through meta-analysis and machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1