Hua He, Yueyue Lin, Xi Zhang, Hengli Xie, Zhujun Wang, Shenqiang Hu, Liang Li, Hehe Liu, Chunchun Han, Lu Xia, Jiwei Hu, Jiwen Wang, Lin Liao, Xin Yuan
{"title":"Transcriptome Analysis Reveals the Molecular Mechanism of PLIN1 in Goose Hierarchical and Pre-Hierarchical Follicle Granulosa Cells.","authors":"Hua He, Yueyue Lin, Xi Zhang, Hengli Xie, Zhujun Wang, Shenqiang Hu, Liang Li, Hehe Liu, Chunchun Han, Lu Xia, Jiwei Hu, Jiwen Wang, Lin Liao, Xin Yuan","doi":"10.3390/ani15020284","DOIUrl":null,"url":null,"abstract":"<p><p><i>PLIN1</i>, a member of the PAT family, is expressed in both adipocytes and steroidogenic cells. In this study, we used cell transfection technology combined with transcriptome sequencing to investigate the regulatory mechanism of <i>PLIN1</i> in goose follicular GCs. Gene Ontology (GO) analysis revealed that in the four groups (phGC: over_vs_over-NC; hGC: over_vs_over-NC; phGC: si_vs_si-NC; hGC: si_vs_si-NC), most differentially expressed genes (DEGs) were significantly enriched (<i>p</i> < 0.05) in pathways related to biological processes (BPs), particularly those associated with the regulation of cellular lipid metabolism and oxidative stress. KEGG analysis further identified significant enrichment (<i>p</i> < 0.05) in pathways related to cell apoptosis and the cell cycle. A joint analysis of KEGG and PPI on the upregulated and downregulated DEGs revealed that the TGF-β signaling pathway was the only pathway significantly enriched among both upregulated and downregulated DEGs after <i>PLIN1</i> overexpression in hGCs and phGCs. Based on these findings, we hypothesize that <i>PLIN1</i> overexpression may promote granulosa cell proliferation and apoptosis by activating the TGF-β signaling pathway in goose follicular GCs. Additionally, nine potential candidate genes were identified: <i>PPARγ</i>, <i>MGLL</i>, <i>PTEN</i>, <i>BAMBI</i>, <i>BMPR2</i>, <i>JUN</i>, <i>FST</i>, <i>ACSF3</i>, and <i>ACSL4</i>. These results address a significant research gap concerning the role of this gene in granulosa cells and contribute to the understanding of its molecular regulatory mechanisms.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761271/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15020284","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
PLIN1, a member of the PAT family, is expressed in both adipocytes and steroidogenic cells. In this study, we used cell transfection technology combined with transcriptome sequencing to investigate the regulatory mechanism of PLIN1 in goose follicular GCs. Gene Ontology (GO) analysis revealed that in the four groups (phGC: over_vs_over-NC; hGC: over_vs_over-NC; phGC: si_vs_si-NC; hGC: si_vs_si-NC), most differentially expressed genes (DEGs) were significantly enriched (p < 0.05) in pathways related to biological processes (BPs), particularly those associated with the regulation of cellular lipid metabolism and oxidative stress. KEGG analysis further identified significant enrichment (p < 0.05) in pathways related to cell apoptosis and the cell cycle. A joint analysis of KEGG and PPI on the upregulated and downregulated DEGs revealed that the TGF-β signaling pathway was the only pathway significantly enriched among both upregulated and downregulated DEGs after PLIN1 overexpression in hGCs and phGCs. Based on these findings, we hypothesize that PLIN1 overexpression may promote granulosa cell proliferation and apoptosis by activating the TGF-β signaling pathway in goose follicular GCs. Additionally, nine potential candidate genes were identified: PPARγ, MGLL, PTEN, BAMBI, BMPR2, JUN, FST, ACSF3, and ACSL4. These results address a significant research gap concerning the role of this gene in granulosa cells and contribute to the understanding of its molecular regulatory mechanisms.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).