Ignacija Vlašić, Antonio Krstačić-Galić, Anđela Horvat, Nada Oršolić, Anja Sadžak, Lucija Mandić, Suzana Šegota, Maja Jazvinšćak Jembrek
{"title":"Neurotoxic Effect of Myricitrin in Copper-Induced Oxidative Stress Is Mediated by Increased Intracellular Ca<sup>2+</sup> Levels and ROS/p53/p38 Axis.","authors":"Ignacija Vlašić, Antonio Krstačić-Galić, Anđela Horvat, Nada Oršolić, Anja Sadžak, Lucija Mandić, Suzana Šegota, Maja Jazvinšćak Jembrek","doi":"10.3390/antiox14010046","DOIUrl":null,"url":null,"abstract":"<p><p>Although commonly appreciated for their anti-oxidative and neuroprotective properties, flavonoids can also exhibit pro-oxidative activity, potentially reducing cell survival, particularly in the presence of metal ions. Disrupted copper homeostasis is a known contributor to neuronal dysfunction through oxidative stress induction. This study investigated the effects of myricitrin (1-20 μg/mL) on copper-induced toxicity (0.5 mM CuSO<sub>4</sub>) in the neuroblastoma SH-SY5Y cell line. At non-toxic concentrations, myricitrin exacerbated copper's toxic effects. The myricitrin-induced decrease in survival was accompanied with increased reactive oxygen species (ROS) production, reduced superoxide dismutase activity, and a lower GSH/GSSG ratio. In combination with copper, myricitrin also activated caspase-3/7, promoted nuclear chromatin changes, and compromised membrane integrity. At the protein level, myricitrin upregulated p53 and PUMA expression. The toxic effects of myricitrin were alleviated by the p38 inhibitor SB203580, the intracellular calcium chelator BAPTA-AM, and the NMDA receptor blocker MK-801, highlighting the significant role of the ROS/p53/p38 axis in cell death and the critical involvement of calcium ions in apoptosis induction. The atomic force microscopy was used to assess the surface morphology and nanomechanical properties of SH-SY5Y cells, revealing changes following myricitrin treatment. This research highlights the toxic potential of myricitrin and emphasizes the need for caution when considering flavonoid supplementation in conditions with elevated copper levels.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14010046","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although commonly appreciated for their anti-oxidative and neuroprotective properties, flavonoids can also exhibit pro-oxidative activity, potentially reducing cell survival, particularly in the presence of metal ions. Disrupted copper homeostasis is a known contributor to neuronal dysfunction through oxidative stress induction. This study investigated the effects of myricitrin (1-20 μg/mL) on copper-induced toxicity (0.5 mM CuSO4) in the neuroblastoma SH-SY5Y cell line. At non-toxic concentrations, myricitrin exacerbated copper's toxic effects. The myricitrin-induced decrease in survival was accompanied with increased reactive oxygen species (ROS) production, reduced superoxide dismutase activity, and a lower GSH/GSSG ratio. In combination with copper, myricitrin also activated caspase-3/7, promoted nuclear chromatin changes, and compromised membrane integrity. At the protein level, myricitrin upregulated p53 and PUMA expression. The toxic effects of myricitrin were alleviated by the p38 inhibitor SB203580, the intracellular calcium chelator BAPTA-AM, and the NMDA receptor blocker MK-801, highlighting the significant role of the ROS/p53/p38 axis in cell death and the critical involvement of calcium ions in apoptosis induction. The atomic force microscopy was used to assess the surface morphology and nanomechanical properties of SH-SY5Y cells, revealing changes following myricitrin treatment. This research highlights the toxic potential of myricitrin and emphasizes the need for caution when considering flavonoid supplementation in conditions with elevated copper levels.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.