Protective Effect of Conditioned Medium of Immortalized Human Stem Cells from Exfoliated Deciduous Teeth Against Hair Graying Caused by X-Ray Irradiation via Its Antioxidative Activity.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants Pub Date : 2025-01-18 DOI:10.3390/antiox14010109
Yasuhiro Katahira, Eri Horio, Natsuki Yamaguchi, Jukito Sonoda, Miu Yamagishi, Satomi Miyakawa, Fumihiro Murakami, Hideaki Hasegawa, Izuru Mizoguchi, Takayuki Yoshimoto
{"title":"Protective Effect of Conditioned Medium of Immortalized Human Stem Cells from Exfoliated Deciduous Teeth Against Hair Graying Caused by X-Ray Irradiation via Its Antioxidative Activity.","authors":"Yasuhiro Katahira, Eri Horio, Natsuki Yamaguchi, Jukito Sonoda, Miu Yamagishi, Satomi Miyakawa, Fumihiro Murakami, Hideaki Hasegawa, Izuru Mizoguchi, Takayuki Yoshimoto","doi":"10.3390/antiox14010109","DOIUrl":null,"url":null,"abstract":"<p><p>Hair graying is one of the common visible signs of human aging, resulting from decreased or abolished melanogenesis due to the depletion of melanocyte stem cells through excess accumulation of oxidative stress. Cell-free therapy using a conditioned medium (CM) of mesenchymal stem cells has been highlighted in the field of regenerative medicine owing to its potent therapeutic effects with lower regulatory hurdles and safety risk. Recently, we demonstrated that a CM of an immortalized stem cell line from human exfoliated deciduous teeth (SHED) has protective effects against a mouse model of ulcer formation via antioxidative and angiogenic activities mediated by HGF and VEGF. However, to date, no effective treatments for hair graying have been developed, and the effect of SHED-CM on hair graying remains unknown. In this study, we have investigated the effect of SHED-CM on a hair graying mouse model caused by X-ray irradiation. Repetitive subcutaneous administrations of SHED-CM greatly suppressed the development of hair graying, when compared to control medium, resulting in reduced cutaneous expression of 8-hydroxy-2'-deoxyguanosine, the major product of DNA damage induced by reactive oxygen species. Consistent with these in vivo results, SHED-CM significantly inhibited the cell death caused by X-ray irradiation in melanoma cell line B16F10 cells. Immunodepletion of HGF or VEGF in the SHED-CM revealed that this inhibition was due to suppression of the generation of reactive oxygen species, which was mainly mediated by HGF and probably VEGF. These results suggest that SHED-CM has protective effects against hair graying via its antioxidative activity.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760446/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14010109","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hair graying is one of the common visible signs of human aging, resulting from decreased or abolished melanogenesis due to the depletion of melanocyte stem cells through excess accumulation of oxidative stress. Cell-free therapy using a conditioned medium (CM) of mesenchymal stem cells has been highlighted in the field of regenerative medicine owing to its potent therapeutic effects with lower regulatory hurdles and safety risk. Recently, we demonstrated that a CM of an immortalized stem cell line from human exfoliated deciduous teeth (SHED) has protective effects against a mouse model of ulcer formation via antioxidative and angiogenic activities mediated by HGF and VEGF. However, to date, no effective treatments for hair graying have been developed, and the effect of SHED-CM on hair graying remains unknown. In this study, we have investigated the effect of SHED-CM on a hair graying mouse model caused by X-ray irradiation. Repetitive subcutaneous administrations of SHED-CM greatly suppressed the development of hair graying, when compared to control medium, resulting in reduced cutaneous expression of 8-hydroxy-2'-deoxyguanosine, the major product of DNA damage induced by reactive oxygen species. Consistent with these in vivo results, SHED-CM significantly inhibited the cell death caused by X-ray irradiation in melanoma cell line B16F10 cells. Immunodepletion of HGF or VEGF in the SHED-CM revealed that this inhibition was due to suppression of the generation of reactive oxygen species, which was mainly mediated by HGF and probably VEGF. These results suggest that SHED-CM has protective effects against hair graying via its antioxidative activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Exploring the Active Constituents of Andrographis paniculata in Protecting the Skin Barrier and the Synergistic Effects with Collagen XVII. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Intermittent Fasting Protects Against the Progression from Acute Kidney Injury to Chronic Kidney Disease. Molecular Hydrogen Modulates T Cell Differentiation and Enhances Neuro-Regeneration in a Vascular Dementia Mouse Model. Molecular Insights in the Anticancer Activity of Natural Tocotrienols: Targeting Mitochondrial Metabolism and Cellular Redox Homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1