{"title":"C-type natriuretic peptide suppresses VEGFa gene expression by attenuating IL6-STAT3 signal pathway in primary synovial fibroblasts from rat knee.","authors":"Riko Yamashita, Iori Nozawa, Shoichi Hasegawa, Yusuke Nakagawa, Kazumasa Miyatake, Hiroki Katagiri, Tomomasa Nakamura, Hideyuki Koga, Ichiro Sekiya, Toshitaka Yoshii, Kunikazu Tsuji","doi":"10.1016/j.bbrc.2025.151290","DOIUrl":null,"url":null,"abstract":"<p><p>C-type natriuretic peptide (CNP) can be a new disease-modifying anti-osteoarthritis drug (DMOAD) candidate because intraarticular injection of CNP attenuates both articular cartilage degradation and persistent pain in a rat knee arthritis model. This study aimed to elucidate the underlying molecular mechanisms by which CNP protects the knee joint from osteoarthritic changes. Gene expression analyses indicated that CNP did not interfere with the expression of IL1β -responsive genes in rat primary synovial fibroblasts or the monocytic cell line, RAW264.7 cells. In contrast, total RNA sequence analyses indicated that CNP negatively regulated the IL6-STAT3 signaling pathway and VEGFa gene expression in rat synovial fibroblasts. As previously indicated, IL6 induced phosphorylation of <sup>705</sup>Tyr residue of STAT3 and its nuclear translocation to activate VEGFa gene expression; however, in this study, we showed that CNP induced phosphorylation of <sup>727</sup>Ser residue and inhibited IL6-induced nuclear translocation of STAT3. Since the IL6 pathway has been shown to accelerate articular cartilage degradation and induce knee pain, our data suggest that CNP can act as a DMOAD by negatively regulating IL6-mediated proinflammatory signals in the knee joint.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"749 ","pages":"151290"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2025.151290","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
C-type natriuretic peptide (CNP) can be a new disease-modifying anti-osteoarthritis drug (DMOAD) candidate because intraarticular injection of CNP attenuates both articular cartilage degradation and persistent pain in a rat knee arthritis model. This study aimed to elucidate the underlying molecular mechanisms by which CNP protects the knee joint from osteoarthritic changes. Gene expression analyses indicated that CNP did not interfere with the expression of IL1β -responsive genes in rat primary synovial fibroblasts or the monocytic cell line, RAW264.7 cells. In contrast, total RNA sequence analyses indicated that CNP negatively regulated the IL6-STAT3 signaling pathway and VEGFa gene expression in rat synovial fibroblasts. As previously indicated, IL6 induced phosphorylation of 705Tyr residue of STAT3 and its nuclear translocation to activate VEGFa gene expression; however, in this study, we showed that CNP induced phosphorylation of 727Ser residue and inhibited IL6-induced nuclear translocation of STAT3. Since the IL6 pathway has been shown to accelerate articular cartilage degradation and induce knee pain, our data suggest that CNP can act as a DMOAD by negatively regulating IL6-mediated proinflammatory signals in the knee joint.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics