Dapagliflozin increased pancreatic beta cell proliferation and insulinogenic index in mice fed a high-fat and high-sodium chloride diet

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-01-20 DOI:10.1016/j.bbrc.2025.151364
Tomonori Hirose , Hiroshi Takagi , Mitsuhiro Kuno , Tomoyuki Sasaki , Keigo Taki , Yoshihiro Ito , Takashi Miyata , Tomoko Kobayashi , Mariko Sugiyama , Takeshi Onoue , Daisuke Hagiwara , Shintaro Iwama , Hidetaka Suga , Ryoichi Banno , Hiroshi Arima
{"title":"Dapagliflozin increased pancreatic beta cell proliferation and insulinogenic index in mice fed a high-fat and high-sodium chloride diet","authors":"Tomonori Hirose ,&nbsp;Hiroshi Takagi ,&nbsp;Mitsuhiro Kuno ,&nbsp;Tomoyuki Sasaki ,&nbsp;Keigo Taki ,&nbsp;Yoshihiro Ito ,&nbsp;Takashi Miyata ,&nbsp;Tomoko Kobayashi ,&nbsp;Mariko Sugiyama ,&nbsp;Takeshi Onoue ,&nbsp;Daisuke Hagiwara ,&nbsp;Shintaro Iwama ,&nbsp;Hidetaka Suga ,&nbsp;Ryoichi Banno ,&nbsp;Hiroshi Arima","doi":"10.1016/j.bbrc.2025.151364","DOIUrl":null,"url":null,"abstract":"<div><div>People in Eastern Asia, including Japan, traditionally consume higher amounts of sodium chloride than in the United States and Western Europe, and it is common knowledge that impaired insulin secretion—rather than insulin resistance—is highly prevalent in Asian people who have diabetes mellitus. We previously reported that mice fed a high-fat and high-sodium chloride (HFHS) diet had a relatively lower degree of obesity than mice fed a high-fat diet, but had a comparatively impaired insulin secretion. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been shown to dampen down the sympathetic nervous system, which reportedly is activated by a high-sodium chloride diet. In this study, we examined the effects of dapagliflozin, a SGLT2 inhibitor, on glucose metabolism and insulin secretion in mice fed a HFHS diet. C57BL6/J mice were fed a HFHS diet for 6 weeks and subsequently divided into two treatment groups fed: (1) a HFHS diet mixed with dapagliflozin for up to 3 weeks (HFHS + Da) and (2) a HFHS diet without dapagliflozin (HFHS). Dapagliflozin improved glucose tolerance and the insulinogenic index accompanied by increased pancreatic beta cell proliferation. Furthermore, dapagliflozin decreased both the tyrosine hydroxylase-positive area in pancreatic islets and catecholamine excretion in urine. Our results suggest that dapagliflozin improved insulin secretion by suppressing sympathetic nerve activation in mice fed a HFHS diet.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"749 ","pages":"Article 151364"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25000786","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

People in Eastern Asia, including Japan, traditionally consume higher amounts of sodium chloride than in the United States and Western Europe, and it is common knowledge that impaired insulin secretion—rather than insulin resistance—is highly prevalent in Asian people who have diabetes mellitus. We previously reported that mice fed a high-fat and high-sodium chloride (HFHS) diet had a relatively lower degree of obesity than mice fed a high-fat diet, but had a comparatively impaired insulin secretion. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been shown to dampen down the sympathetic nervous system, which reportedly is activated by a high-sodium chloride diet. In this study, we examined the effects of dapagliflozin, a SGLT2 inhibitor, on glucose metabolism and insulin secretion in mice fed a HFHS diet. C57BL6/J mice were fed a HFHS diet for 6 weeks and subsequently divided into two treatment groups fed: (1) a HFHS diet mixed with dapagliflozin for up to 3 weeks (HFHS + Da) and (2) a HFHS diet without dapagliflozin (HFHS). Dapagliflozin improved glucose tolerance and the insulinogenic index accompanied by increased pancreatic beta cell proliferation. Furthermore, dapagliflozin decreased both the tyrosine hydroxylase-positive area in pancreatic islets and catecholamine excretion in urine. Our results suggest that dapagliflozin improved insulin secretion by suppressing sympathetic nerve activation in mice fed a HFHS diet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
Editorial Board OsMADS22 interacts with OsMADS50 to regulate floral transition in rice Unspliced XBP1 enhences metabolic reprogramming in colorectal cancer cells by interfering with the mitochondrial localization of MGME1 Editorial Board Corrigendum to "Soyasapogenol c: A novel liver x receptor α agonist that mitigates cholesterol accumulation in diabetic kidney disease" [Biochem. Biophys. Res. Commun. 752 (2025) 151366].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1