Study on the In Vitro and In Vivo Antioxidant Activity and Potential Mechanism of Polygonum viviparum L.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants Pub Date : 2025-01-01 DOI:10.3390/antiox14010041
Zhen Yang, Jingyuan Man, Haoyu Liu, Di Wu, Qiangwen Gu, Hongjuan Zhang, Yu Liu, Dan Shao, Baocheng Hao, Shengyi Wang
{"title":"Study on the In Vitro and In Vivo Antioxidant Activity and Potential Mechanism of <i>Polygonum viviparum</i> L.","authors":"Zhen Yang, Jingyuan Man, Haoyu Liu, Di Wu, Qiangwen Gu, Hongjuan Zhang, Yu Liu, Dan Shao, Baocheng Hao, Shengyi Wang","doi":"10.3390/antiox14010041","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress refers to the phenomenon in which the redox balance of the body is disrupted in response to stimuli, leading to an excessive accumulation of reactive oxygen species in vivo, which can lead to a variety of diseases. In contrast to artificial antioxidants, whose safety is controversial, natural antioxidants, which are widely available, pharmacologically active, and have little toxic side effects, are expected to be candidates for the treatment of oxidative stress-related diseases. <i>Polygonum viviparum</i> L. (PV) is a natural herbal medicine with antioxidant properties and is used as a traditional medicine in the Tibetan Plateau region. However, there are few studies that have focused on its antioxidant activity and mechanism of action in vitro and in vivo. Therefore, the present study firstly demonstrated that PV could exert good in vitro antioxidant effects by scavenging DPPH radicals and inhibiting the production of hydroxyl radicals through in vitro experiments. Secondly, PV was proven to attenuate the effects of oxidative stress on body weight gain and thymus development by establishing the Senna leaf-induced diarrhea model in rats, as well as to increase the activity of antioxidant enzymes and the content of non-enzymatic antioxidants in the intestinal tract and to enhance the rats' own antioxidant defenses, to mitigate the oxidative damage caused by diarrhea. Subsequently, the application of the cellular oxidative stress model evidenced that PV could play a protective role against cellular oxidative stress by inhibiting the overaccumulation of ROS in macrophages. Furthermore, the candidate antioxidant targets of PV were analyzed and screened using a comprehensive network pharmacology method, and their expression were then examined at the mRNA level and protein level. Our results suggest that PV may protect against H<sub>2</sub>O<sub>2</sub>-induced oxidative damage in macrophages by activating BCL2L1 and inhibiting ESR1, JAK2/STAT3, and MMP2. These findings open new perspectives on the antioxidant mechanism of PV and the prospect of developing it as a novel natural antioxidant drug.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14010041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative stress refers to the phenomenon in which the redox balance of the body is disrupted in response to stimuli, leading to an excessive accumulation of reactive oxygen species in vivo, which can lead to a variety of diseases. In contrast to artificial antioxidants, whose safety is controversial, natural antioxidants, which are widely available, pharmacologically active, and have little toxic side effects, are expected to be candidates for the treatment of oxidative stress-related diseases. Polygonum viviparum L. (PV) is a natural herbal medicine with antioxidant properties and is used as a traditional medicine in the Tibetan Plateau region. However, there are few studies that have focused on its antioxidant activity and mechanism of action in vitro and in vivo. Therefore, the present study firstly demonstrated that PV could exert good in vitro antioxidant effects by scavenging DPPH radicals and inhibiting the production of hydroxyl radicals through in vitro experiments. Secondly, PV was proven to attenuate the effects of oxidative stress on body weight gain and thymus development by establishing the Senna leaf-induced diarrhea model in rats, as well as to increase the activity of antioxidant enzymes and the content of non-enzymatic antioxidants in the intestinal tract and to enhance the rats' own antioxidant defenses, to mitigate the oxidative damage caused by diarrhea. Subsequently, the application of the cellular oxidative stress model evidenced that PV could play a protective role against cellular oxidative stress by inhibiting the overaccumulation of ROS in macrophages. Furthermore, the candidate antioxidant targets of PV were analyzed and screened using a comprehensive network pharmacology method, and their expression were then examined at the mRNA level and protein level. Our results suggest that PV may protect against H2O2-induced oxidative damage in macrophages by activating BCL2L1 and inhibiting ESR1, JAK2/STAT3, and MMP2. These findings open new perspectives on the antioxidant mechanism of PV and the prospect of developing it as a novel natural antioxidant drug.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Exploring the Active Constituents of Andrographis paniculata in Protecting the Skin Barrier and the Synergistic Effects with Collagen XVII. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Intermittent Fasting Protects Against the Progression from Acute Kidney Injury to Chronic Kidney Disease. Molecular Hydrogen Modulates T Cell Differentiation and Enhances Neuro-Regeneration in a Vascular Dementia Mouse Model. Molecular Insights in the Anticancer Activity of Natural Tocotrienols: Targeting Mitochondrial Metabolism and Cellular Redox Homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1