Synthesis, molecular dynamics simulation and antimicrobial activity of novel s-triazine clubbed with three different hybrid pharmacophores

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-01-19 DOI:10.1016/j.bbrc.2025.151358
Riki P. Tailor , Krupa G. Prajapati , Mustafa Alhaji Isa , Abidemi Paul Kappo
{"title":"Synthesis, molecular dynamics simulation and antimicrobial activity of novel s-triazine clubbed with three different hybrid pharmacophores","authors":"Riki P. Tailor ,&nbsp;Krupa G. Prajapati ,&nbsp;Mustafa Alhaji Isa ,&nbsp;Abidemi Paul Kappo","doi":"10.1016/j.bbrc.2025.151358","DOIUrl":null,"url":null,"abstract":"<div><div>To address microbial infections and combat drug resistance, we designed, synthesized, and evaluated three novel s-triazine clubbed pharmacophores: 1-acetylpyrazoline (5a-e), 2-aminopyrimidine (6a-e), and 1,5-benzodiazepine (7a-e). These were derived from chalcone (4a-e), showing improved pharmacological profiles. The compounds underwent characterization by FTIR, NMR, and Mass Spectroscopy, and their antimicrobial activities, along with structure-activity relationships (SAR), were assessed using in silico and in vitro methods. Among the tested compounds, 5c, 5e, 6d, 7a, 7d, and 7e demonstrated significant antibacterial activities with MIC values between 50 and 62.5 μg/mL against <em>Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli,</em> and <em>Pseudomonas aeruginosa</em>, which indicates their therapeutic potential. Similarly, 5b, 6a, 6c, 7b, and 7c exhibited vigorous antifungal activities against <em>Candida albicans, Aspergillus niger</em>, and <em>Aspergillus clavatus</em>, indicating their broad-spectrum antifungal efficacy. Moreover, the antitubercular potential of the compounds was evaluated against the <em>Mycobacterium tuberculosis</em> H37Rv strain, identifying 5c, 6a, 6d, 7a, and 7d as promising antimycobacterial agents. Molecular docking and molecular dynamics simulation analyses indicated excellent binding energies and stable complexes for 6c, 6e, 7a, and 7e against selected proteins from <em>E. coli</em>, <em>Mycobacterium tuberculosis</em>, and Candida albicans after 40 ns MD simulation. Compound 7a shows the best antimycobacterial activity, while 6c possessed significant antifungal properties in both in silico and in vitro analyses. Moreover, 7a and 7e exhibited desirable antibacterial activities in both experiment, indicating the synthesized compounds' broad-spectrum efficacy against various bacterial and fungal species.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"749 ","pages":"Article 151358"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25000725","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To address microbial infections and combat drug resistance, we designed, synthesized, and evaluated three novel s-triazine clubbed pharmacophores: 1-acetylpyrazoline (5a-e), 2-aminopyrimidine (6a-e), and 1,5-benzodiazepine (7a-e). These were derived from chalcone (4a-e), showing improved pharmacological profiles. The compounds underwent characterization by FTIR, NMR, and Mass Spectroscopy, and their antimicrobial activities, along with structure-activity relationships (SAR), were assessed using in silico and in vitro methods. Among the tested compounds, 5c, 5e, 6d, 7a, 7d, and 7e demonstrated significant antibacterial activities with MIC values between 50 and 62.5 μg/mL against Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, and Pseudomonas aeruginosa, which indicates their therapeutic potential. Similarly, 5b, 6a, 6c, 7b, and 7c exhibited vigorous antifungal activities against Candida albicans, Aspergillus niger, and Aspergillus clavatus, indicating their broad-spectrum antifungal efficacy. Moreover, the antitubercular potential of the compounds was evaluated against the Mycobacterium tuberculosis H37Rv strain, identifying 5c, 6a, 6d, 7a, and 7d as promising antimycobacterial agents. Molecular docking and molecular dynamics simulation analyses indicated excellent binding energies and stable complexes for 6c, 6e, 7a, and 7e against selected proteins from E. coli, Mycobacterium tuberculosis, and Candida albicans after 40 ns MD simulation. Compound 7a shows the best antimycobacterial activity, while 6c possessed significant antifungal properties in both in silico and in vitro analyses. Moreover, 7a and 7e exhibited desirable antibacterial activities in both experiment, indicating the synthesized compounds' broad-spectrum efficacy against various bacterial and fungal species.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
Editorial Board PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis Itaconate drives pro-inflammatory responses through proteasomal degradation of GLO1 ATG9 promotes autophagosome formation through interaction with LC3 Chemical inhibition of eIF4A3 abolishes UPF1 recruitment onto mRNA encoding NMD factors and restores their expression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1