The PDR-type ABC transporter OsPDR1 is involved in leaf senescence by influencing melatonin biosynthesis in rice

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-01-17 DOI:10.1016/j.bbrc.2025.151355
Junming Zheng, Jinjin Ge, Pengyu Li, Boning Xin, Feng Lin, Wenhua Zhang, Wen Jing
{"title":"The PDR-type ABC transporter OsPDR1 is involved in leaf senescence by influencing melatonin biosynthesis in rice","authors":"Junming Zheng,&nbsp;Jinjin Ge,&nbsp;Pengyu Li,&nbsp;Boning Xin,&nbsp;Feng Lin,&nbsp;Wenhua Zhang,&nbsp;Wen Jing","doi":"10.1016/j.bbrc.2025.151355","DOIUrl":null,"url":null,"abstract":"<div><div>Leaf senescence is a complex developmental process that is regulated by multiple genetic and environmental factors. Understanding the mechanisms underlying the regulation of leaf senescence will provide valuable insights for manipulation of this trait in crops. Here, we report that the ATP-binding cassette (ABC) transporter OsPDR1 is involved in promoting leaf senescence in rice. Mutation and overexpression of <em>OsPDR1</em> delayed and accelerated natural leaf senescence at the seedling and mature stages, respectively. The level of <em>OsPDR1</em> transcript in leaves was significantly upregulated by dark treatment. Overexpression of <em>OsPDR1</em> accelerated dark-induced leaf senescence by enhancing senescence-associated gene expression, whereas its mutation delayed dark-induced leaf senescence. <em>OsPDR1</em> is coexpressed with the rice <em>N</em>-acetylserotonin methyltransferase gene, <em>OsASMT1</em>, encoding a key enzyme in melatonin biosynthesis. <em>OsASMT1</em> expression levels and melatonin content were significantly decreased in <em>OsPDR1</em>-overexpressing lines but significantly increased in <em>ospdr1</em> mutants compared to the wild type. Exogenous melatonin application markedly decreased the accumulation of reactive oxygen species (ROS) and delayed leaf senescence in <em>PDR1.3</em>-overexpressing plants. These results indicated that OsPDR1 plays an important role in the regulation of leaf senescence by influencing melatonin biosynthesis in rice.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"749 ","pages":"Article 151355"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25000695","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Leaf senescence is a complex developmental process that is regulated by multiple genetic and environmental factors. Understanding the mechanisms underlying the regulation of leaf senescence will provide valuable insights for manipulation of this trait in crops. Here, we report that the ATP-binding cassette (ABC) transporter OsPDR1 is involved in promoting leaf senescence in rice. Mutation and overexpression of OsPDR1 delayed and accelerated natural leaf senescence at the seedling and mature stages, respectively. The level of OsPDR1 transcript in leaves was significantly upregulated by dark treatment. Overexpression of OsPDR1 accelerated dark-induced leaf senescence by enhancing senescence-associated gene expression, whereas its mutation delayed dark-induced leaf senescence. OsPDR1 is coexpressed with the rice N-acetylserotonin methyltransferase gene, OsASMT1, encoding a key enzyme in melatonin biosynthesis. OsASMT1 expression levels and melatonin content were significantly decreased in OsPDR1-overexpressing lines but significantly increased in ospdr1 mutants compared to the wild type. Exogenous melatonin application markedly decreased the accumulation of reactive oxygen species (ROS) and delayed leaf senescence in PDR1.3-overexpressing plants. These results indicated that OsPDR1 plays an important role in the regulation of leaf senescence by influencing melatonin biosynthesis in rice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
Editorial Board PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis Itaconate drives pro-inflammatory responses through proteasomal degradation of GLO1 ATG9 promotes autophagosome formation through interaction with LC3 Chemical inhibition of eIF4A3 abolishes UPF1 recruitment onto mRNA encoding NMD factors and restores their expression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1