Machine-Learning Parsimonious Prediction Model for Diagnostic Screening of Severe Hematological Adverse Events in Cancer Patients Treated with PD-1/PD-L1 Inhibitors: Retrospective Observational Study by Using the Common Data Model.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Diagnostics Pub Date : 2025-01-20 DOI:10.3390/diagnostics15020226
Seok Jun Park, Seungwon Yang, Suhyun Lee, Sung Hwan Joo, Taemin Park, Dong Hyun Kim, Hyeonji Kim, Soyun Park, Jung-Tae Kim, Won Gun Kwack, Sung Wook Kang, Yun-Kyoung Song, Jae Myung Cha, Sang Youl Rhee, Eun Kyoung Chung
{"title":"Machine-Learning Parsimonious Prediction Model for Diagnostic Screening of Severe Hematological Adverse Events in Cancer Patients Treated with PD-1/PD-L1 Inhibitors: Retrospective Observational Study by Using the Common Data Model.","authors":"Seok Jun Park, Seungwon Yang, Suhyun Lee, Sung Hwan Joo, Taemin Park, Dong Hyun Kim, Hyeonji Kim, Soyun Park, Jung-Tae Kim, Won Gun Kwack, Sung Wook Kang, Yun-Kyoung Song, Jae Myung Cha, Sang Youl Rhee, Eun Kyoung Chung","doi":"10.3390/diagnostics15020226","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Earlier detection of severe immune-related hematological adverse events (irHAEs) in cancer patients treated with a PD-1 or PD-L1 inhibitor is critical to improving treatment outcomes. The study aimed to develop a simple machine learning (ML) model for predicting irHAEs associated with PD-1/PD-L1 inhibitors. <b>Methods</b>: We utilized the Observational Medical Outcomes Partnership-Common Data Model based on electronic medical records from a tertiary (KHMC) and a secondary (KHNMC) hospital in South Korea. Severe irHAEs were defined as Grades 3-5 by the Common Terminology Criteria for Adverse Events (version 5.0). The predictive model was developed using the KHMC dataset, and then cross-validated against an independent cohort (KHNMC). The full ML models were then simplified by selecting critical features based on the feature importance values (FIVs). <b>Results</b>: Overall, 397 and 255 patients were included in the primary (KHMC) and cross-validation (KHNMC) cohort, respectively. Among the tested ML algorithms, random forest achieved the highest accuracy (area under the receiver operating characteristic curve [AUROC] 0.88 for both cohorts). Parsimonious models reduced to 50% FIVs of the full models showed comparable performance to the full models (AUROC 0.83-0.86, <i>p</i> > 0.05). The KHMC and KHNMC parsimonious models shared common predictive features including furosemide, oxygen gas, piperacillin/tazobactam, and acetylcysteine. <b>Conclusions:</b> Considering the simplicity and adequate predictive performance, our simplified ML models might be easily implemented in clinical practice with broad applicability. Our model might enhance early diagnostic screening of irHAEs induced by PD-1/PD-L1 inhibitors, contributing to minimizing the risk of severe irHAEs and improving the effectiveness of cancer immunotherapy.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763827/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15020226","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Earlier detection of severe immune-related hematological adverse events (irHAEs) in cancer patients treated with a PD-1 or PD-L1 inhibitor is critical to improving treatment outcomes. The study aimed to develop a simple machine learning (ML) model for predicting irHAEs associated with PD-1/PD-L1 inhibitors. Methods: We utilized the Observational Medical Outcomes Partnership-Common Data Model based on electronic medical records from a tertiary (KHMC) and a secondary (KHNMC) hospital in South Korea. Severe irHAEs were defined as Grades 3-5 by the Common Terminology Criteria for Adverse Events (version 5.0). The predictive model was developed using the KHMC dataset, and then cross-validated against an independent cohort (KHNMC). The full ML models were then simplified by selecting critical features based on the feature importance values (FIVs). Results: Overall, 397 and 255 patients were included in the primary (KHMC) and cross-validation (KHNMC) cohort, respectively. Among the tested ML algorithms, random forest achieved the highest accuracy (area under the receiver operating characteristic curve [AUROC] 0.88 for both cohorts). Parsimonious models reduced to 50% FIVs of the full models showed comparable performance to the full models (AUROC 0.83-0.86, p > 0.05). The KHMC and KHNMC parsimonious models shared common predictive features including furosemide, oxygen gas, piperacillin/tazobactam, and acetylcysteine. Conclusions: Considering the simplicity and adequate predictive performance, our simplified ML models might be easily implemented in clinical practice with broad applicability. Our model might enhance early diagnostic screening of irHAEs induced by PD-1/PD-L1 inhibitors, contributing to minimizing the risk of severe irHAEs and improving the effectiveness of cancer immunotherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
期刊最新文献
Machine-Learning Parsimonious Prediction Model for Diagnostic Screening of Severe Hematological Adverse Events in Cancer Patients Treated with PD-1/PD-L1 Inhibitors: Retrospective Observational Study by Using the Common Data Model. Unlocking the Potential of RNA Sequencing in COVID-19: Toward Accurate Diagnosis and Personalized Medicine. Evaluation of Retinal Changes in Women with Different Phenotypes of Polycystic Ovary Syndrome. Maternal Uterine Artery Doppler and Serum Marker in the First Trimester as Predictive Markers for Small for Gestational Age Neonates and Preeclampsia: A Pilot Study. Controversies in the Application of AI in Radiology-Is There Medico-Legal Support? Aspects from Romanian Practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1