An Efficient 3D Convolutional Neural Network for Dose Prediction in Cancer Radiotherapy from CT Images.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Diagnostics Pub Date : 2025-01-14 DOI:10.3390/diagnostics15020177
Lam Thanh Hien, Pham Trung Hieu, Do Nang Toan
{"title":"An Efficient 3D Convolutional Neural Network for Dose Prediction in Cancer Radiotherapy from CT Images.","authors":"Lam Thanh Hien, Pham Trung Hieu, Do Nang Toan","doi":"10.3390/diagnostics15020177","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction</b>: Cancer is a highly lethal disease with a significantly high mortality rate. One of the most commonly used methods for treatment is radiation therapy. However, cancer treatment using radiotherapy is a time-consuming process that requires significant manual work from planners and doctors. In radiation therapy treatment planning, determining the dose distribution for each of the regions of the patient's body is one of the most difficult and important tasks. Nowadays, artificial intelligence has shown promising results in improving the quality of disease treatment, particularly in cancer radiation therapy. <b>Objectives</b>: The main objective of this study is to build a high-performance deep learning model for predicting radiation therapy doses for cancer and to develop software to easily manipulate and use this model. <b>Materials and Methods</b>: In this paper, we propose a custom 3D convolutional neural network model with a U-Net-based architecture to automatically predict radiation doses during cancer radiation therapy from CT images. To ensure that the predicted doses do not have negative values, which are not valid for radiation doses, a rectified linear unit (ReLU) function is applied to the output to convert negative values to zero. Additionally, a proposed loss function based on a dose-volume histogram is used to train the model, ensuring that the predicted dose concentrations are highly meaningful in terms of radiation therapy. The model is developed using the OpenKBP challenge dataset, which consists of 200, 100, and 40 head and neck cancer patients for training, testing, and validation, respectively. Before the training phase, preprocessing and augmentation techniques, such as standardization, translation, and flipping, are applied to the training set. During the training phase, a cosine annealing scheduler is applied to update the learning rate. <b>Results and Conclusions</b>: Our model achieved strong performance, with a good DVH score (1.444 Gy) on the test dataset, compared to previous studies and state-of-the-art models. In addition, we developed software to display the dose maps predicted by the proposed model for each 2D slice in order to facilitate usage and observation. These results may help doctors in treating cancer with radiation therapy in terms of both time and effectiveness.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15020177","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Cancer is a highly lethal disease with a significantly high mortality rate. One of the most commonly used methods for treatment is radiation therapy. However, cancer treatment using radiotherapy is a time-consuming process that requires significant manual work from planners and doctors. In radiation therapy treatment planning, determining the dose distribution for each of the regions of the patient's body is one of the most difficult and important tasks. Nowadays, artificial intelligence has shown promising results in improving the quality of disease treatment, particularly in cancer radiation therapy. Objectives: The main objective of this study is to build a high-performance deep learning model for predicting radiation therapy doses for cancer and to develop software to easily manipulate and use this model. Materials and Methods: In this paper, we propose a custom 3D convolutional neural network model with a U-Net-based architecture to automatically predict radiation doses during cancer radiation therapy from CT images. To ensure that the predicted doses do not have negative values, which are not valid for radiation doses, a rectified linear unit (ReLU) function is applied to the output to convert negative values to zero. Additionally, a proposed loss function based on a dose-volume histogram is used to train the model, ensuring that the predicted dose concentrations are highly meaningful in terms of radiation therapy. The model is developed using the OpenKBP challenge dataset, which consists of 200, 100, and 40 head and neck cancer patients for training, testing, and validation, respectively. Before the training phase, preprocessing and augmentation techniques, such as standardization, translation, and flipping, are applied to the training set. During the training phase, a cosine annealing scheduler is applied to update the learning rate. Results and Conclusions: Our model achieved strong performance, with a good DVH score (1.444 Gy) on the test dataset, compared to previous studies and state-of-the-art models. In addition, we developed software to display the dose maps predicted by the proposed model for each 2D slice in order to facilitate usage and observation. These results may help doctors in treating cancer with radiation therapy in terms of both time and effectiveness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
期刊最新文献
The Value of Clinical Decision Support in Healthcare: A Focus on Screening and Early Detection. Pain-Related White-Matter Changes Following Mild Traumatic Brain Injury: A Longitudinal Diffusion Tensor Imaging Pilot Study. Performance Comparison of Two In-House PCR Methods for Detecting Neisseria meningitidis in Asymptomatic Carriers and Antimicrobial Resistance Profiling. Fine-Tuned Machine Learning Classifiers for Diagnosing Parkinson's Disease Using Vocal Characteristics: A Comparative Analysis. Comparing ChatGPT 4.0's Performance in Interpreting Thyroid Nodule Ultrasound Reports Using ACR-TI-RADS 2017: Analysis Across Different Levels of Ultrasound User Experience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1