Erroneous Classification and Coding as a Limitation for Big Data Analyses: Causes and Impacts Illustrated by the Diagnosis of Clavicle Injuries.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Diagnostics Pub Date : 2025-01-08 DOI:10.3390/diagnostics15020131
Robert Raché, Lara-Sophie Claudé, Marcus Vollmer, Lyubomir Haralambiev, Denis Gümbel, Axel Ekkernkamp, Martin Jordan, Stefan Schulz-Drost, Mustafa Sinan Bakir
{"title":"Erroneous Classification and Coding as a Limitation for Big Data Analyses: Causes and Impacts Illustrated by the Diagnosis of Clavicle Injuries.","authors":"Robert Raché, Lara-Sophie Claudé, Marcus Vollmer, Lyubomir Haralambiev, Denis Gümbel, Axel Ekkernkamp, Martin Jordan, Stefan Schulz-Drost, Mustafa Sinan Bakir","doi":"10.3390/diagnostics15020131","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Clavicle injuries are common and seem to be frequently subject to diagnostic misclassification. The accurate identification of clavicle fractures is essential, particularly for registry and Big Data analyses. This study aims to assess the frequency of diagnostic errors in clavicle injury classifications. <b>Methods</b>: This retrospective study analyzed patient data from two Level 1 trauma centers, covering the period from 2008 to 2019. Included were cases with ICD-coded diagnoses of medial, midshaft, and lateral clavicle fractures, as well as sternoclavicular and acromioclavicular joint dislocations. Radiological images were re-evaluated, and discharge summaries, radiological reports, and billing codes were examined for diagnostic accuracy. <b>Results</b>: A total of 1503 patients were included, accounting for 1855 initial injury diagnoses. In contrast, 1846 were detected upon review. Initially, 14.4% of cases were coded as medial clavicle fractures, whereas only 5.2% were confirmed. The misclassification rate was 82.8% for initial medial fractures (<i>p</i> < 0.001), 42.5% for midshaft fractures (<i>p</i> < 0.001), and 34.2% for lateral fractures (<i>p</i> < 0.001). Billing codes and discharge summaries were the most error-prone categories, with error rates of 64% and 36% of all misclassified cases, respectively. Over three-quarters of the cases with discharge summary errors also exhibited errors in other categories, while billing errors co-occurred with other category errors in just over half of the cases (<i>p</i> < 0.001). The likelihood of radiological diagnostic error increased with the number of imaging modalities used, from 19.7% with a single modality to 30.5% with two and 40.7% with three. <b>Conclusions</b>: Our findings indicate that diagnostic misclassification of clavicle fractures is common, particularly between medial and midshaft fractures, often resulting from errors in multiple categories. Further prospective studies are needed, as accurate classification is foundational for the reliable application of Big Data and AI-based analyses in clinical research.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15020131","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Clavicle injuries are common and seem to be frequently subject to diagnostic misclassification. The accurate identification of clavicle fractures is essential, particularly for registry and Big Data analyses. This study aims to assess the frequency of diagnostic errors in clavicle injury classifications. Methods: This retrospective study analyzed patient data from two Level 1 trauma centers, covering the period from 2008 to 2019. Included were cases with ICD-coded diagnoses of medial, midshaft, and lateral clavicle fractures, as well as sternoclavicular and acromioclavicular joint dislocations. Radiological images were re-evaluated, and discharge summaries, radiological reports, and billing codes were examined for diagnostic accuracy. Results: A total of 1503 patients were included, accounting for 1855 initial injury diagnoses. In contrast, 1846 were detected upon review. Initially, 14.4% of cases were coded as medial clavicle fractures, whereas only 5.2% were confirmed. The misclassification rate was 82.8% for initial medial fractures (p < 0.001), 42.5% for midshaft fractures (p < 0.001), and 34.2% for lateral fractures (p < 0.001). Billing codes and discharge summaries were the most error-prone categories, with error rates of 64% and 36% of all misclassified cases, respectively. Over three-quarters of the cases with discharge summary errors also exhibited errors in other categories, while billing errors co-occurred with other category errors in just over half of the cases (p < 0.001). The likelihood of radiological diagnostic error increased with the number of imaging modalities used, from 19.7% with a single modality to 30.5% with two and 40.7% with three. Conclusions: Our findings indicate that diagnostic misclassification of clavicle fractures is common, particularly between medial and midshaft fractures, often resulting from errors in multiple categories. Further prospective studies are needed, as accurate classification is foundational for the reliable application of Big Data and AI-based analyses in clinical research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
期刊最新文献
The Value of Clinical Decision Support in Healthcare: A Focus on Screening and Early Detection. Pain-Related White-Matter Changes Following Mild Traumatic Brain Injury: A Longitudinal Diffusion Tensor Imaging Pilot Study. Performance Comparison of Two In-House PCR Methods for Detecting Neisseria meningitidis in Asymptomatic Carriers and Antimicrobial Resistance Profiling. Fine-Tuned Machine Learning Classifiers for Diagnosing Parkinson's Disease Using Vocal Characteristics: A Comparative Analysis. Comparing ChatGPT 4.0's Performance in Interpreting Thyroid Nodule Ultrasound Reports Using ACR-TI-RADS 2017: Analysis Across Different Levels of Ultrasound User Experience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1