Deep Transfer Learning for Classification of Late Gadolinium Enhancement Cardiac MRI Images into Myocardial Infarction, Myocarditis, and Healthy Classes: Comparison with Subjective Visual Evaluation.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Diagnostics Pub Date : 2025-01-17 DOI:10.3390/diagnostics15020207
Amani Ben Khalifa, Manel Mili, Mezri Maatouk, Asma Ben Abdallah, Mabrouk Abdellali, Sofiene Gaied, Azza Ben Ali, Yassir Lahouel, Mohamed Hedi Bedoui, Ahmed Zrig
{"title":"Deep Transfer Learning for Classification of Late Gadolinium Enhancement Cardiac MRI Images into Myocardial Infarction, Myocarditis, and Healthy Classes: Comparison with Subjective Visual Evaluation.","authors":"Amani Ben Khalifa, Manel Mili, Mezri Maatouk, Asma Ben Abdallah, Mabrouk Abdellali, Sofiene Gaied, Azza Ben Ali, Yassir Lahouel, Mohamed Hedi Bedoui, Ahmed Zrig","doi":"10.3390/diagnostics15020207","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> To develop a computer-aided diagnosis (CAD) method for the classification of late gadolinium enhancement (LGE) cardiac MRI images into myocardial infarction (MI), myocarditis, and healthy classes using a fine-tuned VGG16 model hybridized with multi-layer perceptron (MLP) (VGG16-MLP) and assess our model's performance in comparison to various pre-trained base models and MRI readers. <b>Methods:</b> This study included 361 LGE images for MI, 222 for myocarditis, and 254 for the healthy class. The left ventricle was extracted automatically using a U-net segmentation model on LGE images. Fine-tuned VGG16 was performed for feature extraction. A spatial attention mechanism was implemented as a part of the neural network architecture. The MLP architecture was used for the classification. The evaluation metrics were calculated using a separate test set. To compare the VGG16 model's performance in feature extraction, various pre-trained base models were evaluated: VGG19, DenseNet121, DenseNet201, MobileNet, InceptionV3, and InceptionResNetV2. The Support Vector Machine (SVM) classifier was evaluated and compared to MLP for the classification task. The performance of the VGG16-MLP model was compared with a subjective visual analysis conducted by two blinded independent readers. <b>Results:</b> The VGG16-MLP model allowed high-performance differentiation between MI, myocarditis, and healthy LGE cardiac MRI images. It outperformed the other tested models with 96% accuracy, 97% precision, 96% sensitivity, and 96% F1-score. Our model surpassed the accuracy of Reader 1 by 27% and Reader 2 by 17%. <b>Conclusions:</b> Our study demonstrated that the VGG16-MLP model permits accurate classification of MI, myocarditis, and healthy LGE cardiac MRI images and could be considered a reliable computer-aided diagnosis approach specifically for radiologists with limited experience in cardiovascular imaging.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15020207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: To develop a computer-aided diagnosis (CAD) method for the classification of late gadolinium enhancement (LGE) cardiac MRI images into myocardial infarction (MI), myocarditis, and healthy classes using a fine-tuned VGG16 model hybridized with multi-layer perceptron (MLP) (VGG16-MLP) and assess our model's performance in comparison to various pre-trained base models and MRI readers. Methods: This study included 361 LGE images for MI, 222 for myocarditis, and 254 for the healthy class. The left ventricle was extracted automatically using a U-net segmentation model on LGE images. Fine-tuned VGG16 was performed for feature extraction. A spatial attention mechanism was implemented as a part of the neural network architecture. The MLP architecture was used for the classification. The evaluation metrics were calculated using a separate test set. To compare the VGG16 model's performance in feature extraction, various pre-trained base models were evaluated: VGG19, DenseNet121, DenseNet201, MobileNet, InceptionV3, and InceptionResNetV2. The Support Vector Machine (SVM) classifier was evaluated and compared to MLP for the classification task. The performance of the VGG16-MLP model was compared with a subjective visual analysis conducted by two blinded independent readers. Results: The VGG16-MLP model allowed high-performance differentiation between MI, myocarditis, and healthy LGE cardiac MRI images. It outperformed the other tested models with 96% accuracy, 97% precision, 96% sensitivity, and 96% F1-score. Our model surpassed the accuracy of Reader 1 by 27% and Reader 2 by 17%. Conclusions: Our study demonstrated that the VGG16-MLP model permits accurate classification of MI, myocarditis, and healthy LGE cardiac MRI images and could be considered a reliable computer-aided diagnosis approach specifically for radiologists with limited experience in cardiovascular imaging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
期刊最新文献
Machine-Learning Parsimonious Prediction Model for Diagnostic Screening of Severe Hematological Adverse Events in Cancer Patients Treated with PD-1/PD-L1 Inhibitors: Retrospective Observational Study by Using the Common Data Model. Unlocking the Potential of RNA Sequencing in COVID-19: Toward Accurate Diagnosis and Personalized Medicine. Evaluation of Retinal Changes in Women with Different Phenotypes of Polycystic Ovary Syndrome. Maternal Uterine Artery Doppler and Serum Marker in the First Trimester as Predictive Markers for Small for Gestational Age Neonates and Preeclampsia: A Pilot Study. Controversies in the Application of AI in Radiology-Is There Medico-Legal Support? Aspects from Romanian Practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1