Cinnamic acid alleviates endothelial dysfunction and oxidative stress by targeting PPARδ in obesity and diabetes.

IF 5.3 3区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE Chinese Medicine Pub Date : 2025-01-24 DOI:10.1186/s13020-025-01064-7
Yizhen Bai, Dechao Tan, Qiaowen Deng, Lingchao Miao, Yuehan Wang, Yan Zhou, Yifan Yang, Shengpeng Wang, Chi Teng Vong, Wai San Cheang
{"title":"Cinnamic acid alleviates endothelial dysfunction and oxidative stress by targeting PPARδ in obesity and diabetes.","authors":"Yizhen Bai, Dechao Tan, Qiaowen Deng, Lingchao Miao, Yuehan Wang, Yan Zhou, Yifan Yang, Shengpeng Wang, Chi Teng Vong, Wai San Cheang","doi":"10.1186/s13020-025-01064-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Cinnamic acid (CA) is a bioactive compound isolated from cinnamon. It has been demonstrated to ameliorate inflammation and metabolic diseases, which are associated with endothelial dysfunction. This study was aimed to study the potential protective effects of CA against diabetes-associated endothelial dysfunction and its underlying mechanisms.</p><p><strong>Methods: </strong>High-fat diet (HFD) with 60 kcal% fat was used to induce obesity/diabetes in C57BL/6 mice for 12 weeks. These diet-induced obese (DIO) mice were orally administered with CA at 20 or 40 mg/kg/day, pioglitazone (PIO) at 20 mg/kg/day or same volume of vehicle during the last 4 weeks. Isolated mouse aortic segments and primary culture rat aortic endothelial cells (RAECs) were induced with high glucose (HG) to mimic hyperglycemia and co-treated with different concentrations of CA.</p><p><strong>Results: </strong>In DIO mice, four-week administration of CA, particularly at 40 mg/kg/day, diminished the body weights, blood pressure, fasting blood glucose and plasma lipid levels, and ameliorated endothelium-dependent relaxations (EDRs) and oxidative stress in aortas. The beneficial effects of CA were comparable to the positive control group, PIO. Western blotting results indicated that CA treatment upregulated the expression of peroxisome proliferator-activated receptor delta (PPARδ), and activated nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) and AMP-activated protein kinase (AMPK)/ protein kinase B (Akt)/ endothelial nitric oxide synthase (eNOS) signaling pathways in mouse aortas in vivo and ex vivo. HG stimulation impaired EDRs in mouse aortas and inhibited nitric oxide (NO) production but elevated reactive oxygen species (ROS) levels in RAECs. CA reversed these impairments. Importantly, PPARδ antagonist GSK0660 abolished the vasoprotective effects of CA. Molecular docking analysis suggested a high likelihood of mutual binding between CA and PPARδ.</p><p><strong>Conclusion: </strong>CA protects against endothelial dysfunction and oxidative stress in diabetes and obesity by targeting PPARδ through Nrf2/HO-1 and Akt/eNOS signaling pathways.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"13"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-025-01064-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Cinnamic acid (CA) is a bioactive compound isolated from cinnamon. It has been demonstrated to ameliorate inflammation and metabolic diseases, which are associated with endothelial dysfunction. This study was aimed to study the potential protective effects of CA against diabetes-associated endothelial dysfunction and its underlying mechanisms.

Methods: High-fat diet (HFD) with 60 kcal% fat was used to induce obesity/diabetes in C57BL/6 mice for 12 weeks. These diet-induced obese (DIO) mice were orally administered with CA at 20 or 40 mg/kg/day, pioglitazone (PIO) at 20 mg/kg/day or same volume of vehicle during the last 4 weeks. Isolated mouse aortic segments and primary culture rat aortic endothelial cells (RAECs) were induced with high glucose (HG) to mimic hyperglycemia and co-treated with different concentrations of CA.

Results: In DIO mice, four-week administration of CA, particularly at 40 mg/kg/day, diminished the body weights, blood pressure, fasting blood glucose and plasma lipid levels, and ameliorated endothelium-dependent relaxations (EDRs) and oxidative stress in aortas. The beneficial effects of CA were comparable to the positive control group, PIO. Western blotting results indicated that CA treatment upregulated the expression of peroxisome proliferator-activated receptor delta (PPARδ), and activated nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) and AMP-activated protein kinase (AMPK)/ protein kinase B (Akt)/ endothelial nitric oxide synthase (eNOS) signaling pathways in mouse aortas in vivo and ex vivo. HG stimulation impaired EDRs in mouse aortas and inhibited nitric oxide (NO) production but elevated reactive oxygen species (ROS) levels in RAECs. CA reversed these impairments. Importantly, PPARδ antagonist GSK0660 abolished the vasoprotective effects of CA. Molecular docking analysis suggested a high likelihood of mutual binding between CA and PPARδ.

Conclusion: CA protects against endothelial dysfunction and oxidative stress in diabetes and obesity by targeting PPARδ through Nrf2/HO-1 and Akt/eNOS signaling pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Medicine
Chinese Medicine INTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍: Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine. Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies. Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.
期刊最新文献
Organoid, organ-on-a-chip and traditional Chinese medicine. The preventive effect and mechanism of Tibetan medicine Aconitum tanguticum (Maxim.) Stapf on acute lung injury. Correction: Aidi injection inhibits the migration and invasion of gefitinib-resistant lung adenocarcinoma cells by regulating the PLAT/FAK/AKT pathway. Distinct mechanisms of electroacupuncture and manual acupuncture in modulating hypothalamic GnRH-tanycyte unit function of polycystic ovary syndrome. The role of natural products targeting macrophage polarization in sepsis-induced lung injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1