Atractylenolide I ameliorated the growth and enzalutamide resistance of castration-resistant prostate cancer by targeting KIF15.

IF 5.3 3区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE Chinese Medicine Pub Date : 2025-03-14 DOI:10.1186/s13020-025-01086-1
Chenglin Han, Bin Yang, Yuxuan Deng, Peng Hu, Bintao Hu, Xiaming Liu, Tao Wang, Chengbao Li, Jihong Liu, Huixing Yuan
{"title":"Atractylenolide I ameliorated the growth and enzalutamide resistance of castration-resistant prostate cancer by targeting KIF15.","authors":"Chenglin Han, Bin Yang, Yuxuan Deng, Peng Hu, Bintao Hu, Xiaming Liu, Tao Wang, Chengbao Li, Jihong Liu, Huixing Yuan","doi":"10.1186/s13020-025-01086-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Castration-resistant prostate cancer (CRPC) has been a major cause of tumor-associated death among men worldwide. The discovery of novel therapeutic medicines for CRPC remains imperative. Atractylenolide I (ATR-I), a prominent bioactive component from Atractylodes macrocephala, exhibits powerful anticancer potentials in various malignancies. Nevertheless, the ATR-I's activity on CRPC has not been reported.</p><p><strong>Methods: </strong>An enzalutamide-resistant (EnzR) cell line was successfully constructed. CCK-8, EdU, wound healing, Transwell assays, flow cytometry, and xenograft tumor models were applied to investigate the antitumor activity of ATR-I against CRPC. The changes in the gene expression profiles after ATR-I treatment were analyzed using RNA sequencing.</p><p><strong>Results: </strong>ATR-I suppressed the proliferative and migratory abilities of AR<sup>+</sup> and AR<sup>-</sup> CRPC cells, while triggering cell cycle arrest and apoptosis. ATR-I also exerted anti-cancer activity on EnzR cell lines. Intriguingly, a combination of ATR-I with enzalutamide synergistically induced more apoptosis of tumor cells. RNA-sequencing identified kinesin family member 15 (KIF15) as a potential target of ATR-I. KIF15 was up-regulated in prostate cancer (PCa), and its higher level was associated with poorer clinical outcomes. Further investigation showed that ATR-I mediated ubiquitin-proteasomal degradation of AR/AR-V7 through targeting KIF15, resulting in CRPC repression. Finally, our in vivo experiment verified that ATR-I alone or in combination with enzalutamide retarded the growth of EnzR xenograft tumors.</p><p><strong>Conclusions: </strong>These findings identified ATR-I as a promising therapeutic drug for overcoming enzalutamide resistance in CRPC patients and increased our understanding about its antitumor mechanisms.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"35"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-025-01086-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Castration-resistant prostate cancer (CRPC) has been a major cause of tumor-associated death among men worldwide. The discovery of novel therapeutic medicines for CRPC remains imperative. Atractylenolide I (ATR-I), a prominent bioactive component from Atractylodes macrocephala, exhibits powerful anticancer potentials in various malignancies. Nevertheless, the ATR-I's activity on CRPC has not been reported.

Methods: An enzalutamide-resistant (EnzR) cell line was successfully constructed. CCK-8, EdU, wound healing, Transwell assays, flow cytometry, and xenograft tumor models were applied to investigate the antitumor activity of ATR-I against CRPC. The changes in the gene expression profiles after ATR-I treatment were analyzed using RNA sequencing.

Results: ATR-I suppressed the proliferative and migratory abilities of AR+ and AR- CRPC cells, while triggering cell cycle arrest and apoptosis. ATR-I also exerted anti-cancer activity on EnzR cell lines. Intriguingly, a combination of ATR-I with enzalutamide synergistically induced more apoptosis of tumor cells. RNA-sequencing identified kinesin family member 15 (KIF15) as a potential target of ATR-I. KIF15 was up-regulated in prostate cancer (PCa), and its higher level was associated with poorer clinical outcomes. Further investigation showed that ATR-I mediated ubiquitin-proteasomal degradation of AR/AR-V7 through targeting KIF15, resulting in CRPC repression. Finally, our in vivo experiment verified that ATR-I alone or in combination with enzalutamide retarded the growth of EnzR xenograft tumors.

Conclusions: These findings identified ATR-I as a promising therapeutic drug for overcoming enzalutamide resistance in CRPC patients and increased our understanding about its antitumor mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Medicine
Chinese Medicine INTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍: Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine. Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies. Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.
期刊最新文献
New advances in Traditional Chinese Medicine interventions for epilepsy: where are we and what do we know? Reunderstanding the classical prescription Banxia Xiexin Decoction: new perspectives from a comprehensive review of clinical research and pharmacological studies. Shengui Sansheng San alleviates the worsening of blood-brain barrier integrity resulted from delayed tPA administration through VIP/VIPR1 pathway. Chikusetsusaponin IVa targeted YAP as an inhibitor to attenuate liver fibrosis and hepatic stellate cell activation. Atractylenolide I ameliorated the growth and enzalutamide resistance of castration-resistant prostate cancer by targeting KIF15.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1