Depression Detection and Diagnosis Based on Electroencephalogram (EEG) Analysis: A Systematic Review.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Diagnostics Pub Date : 2025-01-17 DOI:10.3390/diagnostics15020210
Kholoud Elnaggar, Mostafa M El-Gayar, Mohammed Elmogy
{"title":"Depression Detection and Diagnosis Based on Electroencephalogram (EEG) Analysis: A Systematic Review.","authors":"Kholoud Elnaggar, Mostafa M El-Gayar, Mohammed Elmogy","doi":"10.3390/diagnostics15020210","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Mental disorders are disturbances of brain functions that cause cognitive, affective, volitional, and behavioral functions to be disrupted to varying degrees. One of these disorders is depression, a significant factor contributing to the increase in suicide cases worldwide. Consequently, depression has become a significant public health issue globally. Electroencephalogram (EEG) data can be utilized to diagnose mild depression disorder (MDD), offering valuable insights into the pathophysiological mechanisms underlying mental disorders and enhancing the understanding of MDD. <b>Methods:</b> This survey emphasizes the critical role of EEG in advancing artificial intelligence (AI)-driven approaches for depression diagnosis. By focusing on studies that integrate EEG with machine learning (ML) and deep learning (DL) techniques, we systematically analyze methods utilizing EEG signals to identify depression biomarkers. The survey highlights advancements in EEG preprocessing, feature extraction, and model development, showcasing how these approaches enhance the diagnostic precision, scalability, and automation of depression detection. <b>Results:</b> This survey is distinguished from prior reviews by addressing their limitations and providing researchers with valuable insights for future studies. It offers a comprehensive comparison of ML and DL approaches utilizing EEG and an overview of the five key steps in depression detection. The survey also presents existing datasets for depression diagnosis and critically analyzes their limitations. Furthermore, it explores future directions and challenges, such as enhancing diagnostic robustness with data augmentation techniques and optimizing EEG channel selection for improved accuracy. The potential of transfer learning and encoder-decoder architectures to leverage pre-trained models and enhance diagnostic performance is also discussed. Advancements in feature extraction methods for automated depression diagnosis are highlighted as avenues for improving ML and DL model performance. Additionally, integrating Internet of Things (IoT) devices with EEG for continuous mental health monitoring and distinguishing between different types of depression are identified as critical research areas. Finally, the review emphasizes improving the reliability and predictability of computational intelligence-based models to advance depression diagnosis. <b>Conclusions:</b> This study will serve as a well-organized and helpful reference for researchers working on detecting depression using EEG signals and provide insights into the future directions outlined above, guiding further advancements in the field.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15020210","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mental disorders are disturbances of brain functions that cause cognitive, affective, volitional, and behavioral functions to be disrupted to varying degrees. One of these disorders is depression, a significant factor contributing to the increase in suicide cases worldwide. Consequently, depression has become a significant public health issue globally. Electroencephalogram (EEG) data can be utilized to diagnose mild depression disorder (MDD), offering valuable insights into the pathophysiological mechanisms underlying mental disorders and enhancing the understanding of MDD. Methods: This survey emphasizes the critical role of EEG in advancing artificial intelligence (AI)-driven approaches for depression diagnosis. By focusing on studies that integrate EEG with machine learning (ML) and deep learning (DL) techniques, we systematically analyze methods utilizing EEG signals to identify depression biomarkers. The survey highlights advancements in EEG preprocessing, feature extraction, and model development, showcasing how these approaches enhance the diagnostic precision, scalability, and automation of depression detection. Results: This survey is distinguished from prior reviews by addressing their limitations and providing researchers with valuable insights for future studies. It offers a comprehensive comparison of ML and DL approaches utilizing EEG and an overview of the five key steps in depression detection. The survey also presents existing datasets for depression diagnosis and critically analyzes their limitations. Furthermore, it explores future directions and challenges, such as enhancing diagnostic robustness with data augmentation techniques and optimizing EEG channel selection for improved accuracy. The potential of transfer learning and encoder-decoder architectures to leverage pre-trained models and enhance diagnostic performance is also discussed. Advancements in feature extraction methods for automated depression diagnosis are highlighted as avenues for improving ML and DL model performance. Additionally, integrating Internet of Things (IoT) devices with EEG for continuous mental health monitoring and distinguishing between different types of depression are identified as critical research areas. Finally, the review emphasizes improving the reliability and predictability of computational intelligence-based models to advance depression diagnosis. Conclusions: This study will serve as a well-organized and helpful reference for researchers working on detecting depression using EEG signals and provide insights into the future directions outlined above, guiding further advancements in the field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
期刊最新文献
Machine-Learning Parsimonious Prediction Model for Diagnostic Screening of Severe Hematological Adverse Events in Cancer Patients Treated with PD-1/PD-L1 Inhibitors: Retrospective Observational Study by Using the Common Data Model. Unlocking the Potential of RNA Sequencing in COVID-19: Toward Accurate Diagnosis and Personalized Medicine. Evaluation of Retinal Changes in Women with Different Phenotypes of Polycystic Ovary Syndrome. Maternal Uterine Artery Doppler and Serum Marker in the First Trimester as Predictive Markers for Small for Gestational Age Neonates and Preeclampsia: A Pilot Study. Controversies in the Application of AI in Radiology-Is There Medico-Legal Support? Aspects from Romanian Practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1