Accounting for sampling heterogeneity suggests a low paleolatitude origin for dinosaurs.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Biology Pub Date : 2025-01-22 DOI:10.1016/j.cub.2024.12.053
Joel A Heath, Natalie Cooper, Paul Upchurch, Philip D Mannion
{"title":"Accounting for sampling heterogeneity suggests a low paleolatitude origin for dinosaurs.","authors":"Joel A Heath, Natalie Cooper, Paul Upchurch, Philip D Mannion","doi":"10.1016/j.cub.2024.12.053","DOIUrl":null,"url":null,"abstract":"<p><p>Dinosaurs dominated Mesozoic terrestrial ecosystems for ∼160 million years, but their biogeographic origin remains poorly understood. The earliest unequivocal dinosaur fossils appear in the Carnian (∼230 Ma) of southern South America and Africa, leading most authors to propose southwestern Gondwana as the likely center of origin. However, the high taxonomic and morphological diversity of these earliest assemblages suggests a more ancient evolutionary history that is currently unsampled. Phylogenetic uncertainty at the base of Dinosauria, combined with the subsequent appearance of dinosaurs throughout Laurasia in their early evolutionary history, further complicates this picture. Here, we estimate the distribution of early dinosaurs and their archosaurian relatives under a phylogenetic maximum likelihood framework, testing alternative topological arrangements and incorporating potential abiotic barriers to dispersal into our biogeographic models. For the first time, we include spatiotemporal sampling heterogeneity in these models, which frequently supports a low-latitude Gondwanan origin for dinosaurs. These results are best supported when silesaurids are constrained as early-diverging ornithischians, which is likely because this topology accounts for the otherwise substantial ornithischian ghost lineage, explaining the group's absence from the fossil record prior to the Early Jurassic. Our results suggest that the archosaur radiation also took place within low-latitude Gondwana following the end-Permian extinction before lineages dispersed across Pangaea into ecologically and climatically distinct provinces during the Late Triassic. Mesozoic terrestrial vertebrates are under-sampled at low paleolatitudes, and our findings suggest that heterogeneous sampling has hitherto obscured the true paleobiogeographic origin of dinosaurs and their kin.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.12.053","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dinosaurs dominated Mesozoic terrestrial ecosystems for ∼160 million years, but their biogeographic origin remains poorly understood. The earliest unequivocal dinosaur fossils appear in the Carnian (∼230 Ma) of southern South America and Africa, leading most authors to propose southwestern Gondwana as the likely center of origin. However, the high taxonomic and morphological diversity of these earliest assemblages suggests a more ancient evolutionary history that is currently unsampled. Phylogenetic uncertainty at the base of Dinosauria, combined with the subsequent appearance of dinosaurs throughout Laurasia in their early evolutionary history, further complicates this picture. Here, we estimate the distribution of early dinosaurs and their archosaurian relatives under a phylogenetic maximum likelihood framework, testing alternative topological arrangements and incorporating potential abiotic barriers to dispersal into our biogeographic models. For the first time, we include spatiotemporal sampling heterogeneity in these models, which frequently supports a low-latitude Gondwanan origin for dinosaurs. These results are best supported when silesaurids are constrained as early-diverging ornithischians, which is likely because this topology accounts for the otherwise substantial ornithischian ghost lineage, explaining the group's absence from the fossil record prior to the Early Jurassic. Our results suggest that the archosaur radiation also took place within low-latitude Gondwana following the end-Permian extinction before lineages dispersed across Pangaea into ecologically and climatically distinct provinces during the Late Triassic. Mesozoic terrestrial vertebrates are under-sampled at low paleolatitudes, and our findings suggest that heterogeneous sampling has hitherto obscured the true paleobiogeographic origin of dinosaurs and their kin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
期刊最新文献
Accounting for sampling heterogeneity suggests a low paleolatitude origin for dinosaurs. Long-term human influence on the demography and genetic diversity of the hyperdominant Bertholletia excelsa in the Amazon Basin. Ectopic reconstitution of a spine-apparatus-like structure provides insight into mechanisms underlying its formation. Identification of a tetrahedral apical cell preserved within a fossilized fern fiddlehead. Tubulin sequence divergence is associated with the use of distinct microtubule regulators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1