{"title":"Transcriptome Reveals the Differential Regulation of Sugar Metabolism to Saline-Alkali Stress in Different Resistant Oats.","authors":"Naiyu Chen, Shuya Xing, Jiaxin Song, Shutong Lu, Lei Ling, Lina Qu","doi":"10.3390/genes16010105","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Saline-alkali stress is a major factor limiting the growth of oats. Sugar is the primary carbon and energy source in plants which regulates plant development and growth by regulating enzyme activity and gene expression. Sucrose, glucose, and fructose are ubiquitous plant-soluble sugars that act as signalling molecules in the transcriptional regulation of various metabolic and defence-related genes.</p><p><strong>Methods: </strong>In this study, soluble sugars, fructose, sucrose, and starch contents were measured, and transcriptomics was used to determine the differentially expressed genes (DEGs) in saline-sensitive and saline-tolerant oats after 6, 12, 24, and 48 h. DEGs annotated to carbohydrates were selected using the Kyoto Encyclopedia of Genes and Genomes.</p><p><strong>Results: </strong>DEGs involved in carbohydrate metabolism were mainly enriched in the glycolysis/gluconeogenesis and pentose phosphate pathways, fructose and mannose metabolism, and starch and sucrose metabolism. <i>GAPDH</i>, <i>SUPI</i>, <i>SUS2</i>, <i>ATP-PEK</i>, <i>HXK6</i>, <i>FBA4</i>, <i>TBA4</i>, <i>TKT</i>, <i>ISA3</i>, <i>PPDK1</i>, and <i>BAM2</i> were significantly expressed, and a quantitative reverse transcription polymerase chain reaction verified the transcriptome sequencing results.</p><p><strong>Conclusions: </strong>In this study, oats with different salinity tolerances were used to determine sugar contents under four salinity stress durations, and transcriptome sequencing was used to explore the regulatory mechanism of sugars and provide a reference for elucidating the sugar signalling regulatory mechanism under abiotic stress.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11765123/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16010105","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Saline-alkali stress is a major factor limiting the growth of oats. Sugar is the primary carbon and energy source in plants which regulates plant development and growth by regulating enzyme activity and gene expression. Sucrose, glucose, and fructose are ubiquitous plant-soluble sugars that act as signalling molecules in the transcriptional regulation of various metabolic and defence-related genes.
Methods: In this study, soluble sugars, fructose, sucrose, and starch contents were measured, and transcriptomics was used to determine the differentially expressed genes (DEGs) in saline-sensitive and saline-tolerant oats after 6, 12, 24, and 48 h. DEGs annotated to carbohydrates were selected using the Kyoto Encyclopedia of Genes and Genomes.
Results: DEGs involved in carbohydrate metabolism were mainly enriched in the glycolysis/gluconeogenesis and pentose phosphate pathways, fructose and mannose metabolism, and starch and sucrose metabolism. GAPDH, SUPI, SUS2, ATP-PEK, HXK6, FBA4, TBA4, TKT, ISA3, PPDK1, and BAM2 were significantly expressed, and a quantitative reverse transcription polymerase chain reaction verified the transcriptome sequencing results.
Conclusions: In this study, oats with different salinity tolerances were used to determine sugar contents under four salinity stress durations, and transcriptome sequencing was used to explore the regulatory mechanism of sugars and provide a reference for elucidating the sugar signalling regulatory mechanism under abiotic stress.
期刊介绍:
Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.