Antibacterial activity and multi-target mechanism of harmane against Escherichia coli O157:H7 and its application on ready-to-eat leafy greens

IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY International journal of food microbiology Pub Date : 2025-01-23 DOI:10.1016/j.ijfoodmicro.2025.111084
Meixia Sui , Jiaoyue Zhang , Jingying Li , Li Wang , Zhenzhen Gao , Wenjia Dan , Jiangkun Dai
{"title":"Antibacterial activity and multi-target mechanism of harmane against Escherichia coli O157:H7 and its application on ready-to-eat leafy greens","authors":"Meixia Sui ,&nbsp;Jiaoyue Zhang ,&nbsp;Jingying Li ,&nbsp;Li Wang ,&nbsp;Zhenzhen Gao ,&nbsp;Wenjia Dan ,&nbsp;Jiangkun Dai","doi":"10.1016/j.ijfoodmicro.2025.111084","DOIUrl":null,"url":null,"abstract":"<div><div><em>Escherichia coli</em> O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against <em>E. coli</em> O157:H7 (MIC = 64 μg/mL). It exhibited bacteriostatic mode at 1 X and 2 X MIC treatment, and bactericidal mode at 4 X MIC treatment. Moreover, it showed good <em>in vitro</em> stability in sheep plasma, low <em>in vitro</em> hemolysis and no <em>in vivo</em> acute toxicity with LD<sub>50</sub> &gt; 50 mg/kg. Moreover, harmane significantly decreased the colony number of <em>E. coli</em> O157:H7 in fresh-cut lettuce samples after 5 days of storage without affecting appearance. The mechanism study elucidated that harmane significantly decomposed the mature biofilm by reducing exopolysaccharide contents, and killed the viable bacterial cells in biofilm. The cell wall was damaged by harmane <em>via</em> interacting with peptidoglycan. Fluorescent staining and intracellular macromolecular leakage assays showed that irreversible destruction to membrane permeability and integrity. When entering the cell, harmane could defeat the redox balance, suppress metabolic activity and target to ribosome. These findings not only revealed the application potential of harmane as new natural preservative, but also preliminarily elucidated the multi-target mechanism, providing a new strategy for controlling <em>E. coli</em> O157:H7 in the food industry.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"431 ","pages":"Article 111084"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160525000297","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E. coli O157:H7 (MIC = 64 μg/mL). It exhibited bacteriostatic mode at 1 X and 2 X MIC treatment, and bactericidal mode at 4 X MIC treatment. Moreover, it showed good in vitro stability in sheep plasma, low in vitro hemolysis and no in vivo acute toxicity with LD50 > 50 mg/kg. Moreover, harmane significantly decreased the colony number of E. coli O157:H7 in fresh-cut lettuce samples after 5 days of storage without affecting appearance. The mechanism study elucidated that harmane significantly decomposed the mature biofilm by reducing exopolysaccharide contents, and killed the viable bacterial cells in biofilm. The cell wall was damaged by harmane via interacting with peptidoglycan. Fluorescent staining and intracellular macromolecular leakage assays showed that irreversible destruction to membrane permeability and integrity. When entering the cell, harmane could defeat the redox balance, suppress metabolic activity and target to ribosome. These findings not only revealed the application potential of harmane as new natural preservative, but also preliminarily elucidated the multi-target mechanism, providing a new strategy for controlling E. coli O157:H7 in the food industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
DMSO (dimethyl sulfoxide)
索莱宝
Triton X-100
索莱宝
glutaraldehyde
来源期刊
International journal of food microbiology
International journal of food microbiology 工程技术-食品科技
CiteScore
10.40
自引率
5.60%
发文量
322
审稿时长
65 days
期刊介绍: The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.
期刊最新文献
Editorial Board Biological soil amendments can support survival of pathogenic and non-pathogenic Escherichia coli in soils and sporadic transfer to Romaine lettuce Discovery of lactic acid bacteria with high nucleoside degradation and low purine production in tomato sour soup Characterization and release of casein‑sodium alginate embedding phage edible film and the application in controlling of Salmonella contamination in food Electroactivity of Shewanella putrefaciens induced by shrimp matrix: Catalyst for spoilage acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1