Electroactivity of Shewanella putrefaciens induced by shrimp matrix: Catalyst for spoilage acceleration

IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY International journal of food microbiology Pub Date : 2025-02-28 DOI:10.1016/j.ijfoodmicro.2025.111119
Yilin Qian, Taige Liu, Liu Yang, Xianghong Meng, Fei Jia, Zunying Liu
{"title":"Electroactivity of Shewanella putrefaciens induced by shrimp matrix: Catalyst for spoilage acceleration","authors":"Yilin Qian,&nbsp;Taige Liu,&nbsp;Liu Yang,&nbsp;Xianghong Meng,&nbsp;Fei Jia,&nbsp;Zunying Liu","doi":"10.1016/j.ijfoodmicro.2025.111119","DOIUrl":null,"url":null,"abstract":"<div><div>The bacterium <em>Shewanella</em> is commonly found in fishery products along the whole cold chain transportation system and poses a significant threat to public health and the global economy due to its propensity for contaminating food and causing spoilage. In this research, four specific spoilage organisms (SSO) (<em>Shewanella</em> spp.) isolated from various refrigerated aquatic products were found to exhibit electrochemical properties. When modifying the conventional microbial fuel cells with shrimp meat extract as the donor-acceptor, an interesting result was found in the current output of the “shrimp battery”, where it exhibits a significant activation effect and the accumulation of total volatile basic nitrogen, Trimethylamine N-oxide and bioamines. The transcriptomic analysis reveals that the extracellular electron transport pathway of <em>Shewanella putrefaciens</em>-329 in aquatic environments underwent a transfer from <em>Mtr</em> cluster to <em>cbb</em><sub><em>3</em></sub>-type, with its metabolic focus transitioning toward the accumulation of amines, sulfides, and biofilms. Our findings demonstrate that the electrochemical characteristics of <em>Shewanella</em> in aquatic environments play a crucial role in accelerating low-temperature spoilage of aquatic products, thereby offering a novel target for mitigating the detrimental loss of aquatic products caused by <em>Shewanella</em>.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"434 ","pages":"Article 111119"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160525000649","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The bacterium Shewanella is commonly found in fishery products along the whole cold chain transportation system and poses a significant threat to public health and the global economy due to its propensity for contaminating food and causing spoilage. In this research, four specific spoilage organisms (SSO) (Shewanella spp.) isolated from various refrigerated aquatic products were found to exhibit electrochemical properties. When modifying the conventional microbial fuel cells with shrimp meat extract as the donor-acceptor, an interesting result was found in the current output of the “shrimp battery”, where it exhibits a significant activation effect and the accumulation of total volatile basic nitrogen, Trimethylamine N-oxide and bioamines. The transcriptomic analysis reveals that the extracellular electron transport pathway of Shewanella putrefaciens-329 in aquatic environments underwent a transfer from Mtr cluster to cbb3-type, with its metabolic focus transitioning toward the accumulation of amines, sulfides, and biofilms. Our findings demonstrate that the electrochemical characteristics of Shewanella in aquatic environments play a crucial role in accelerating low-temperature spoilage of aquatic products, thereby offering a novel target for mitigating the detrimental loss of aquatic products caused by Shewanella.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of food microbiology
International journal of food microbiology 工程技术-食品科技
CiteScore
10.40
自引率
5.60%
发文量
322
审稿时长
65 days
期刊介绍: The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.
期刊最新文献
Editorial Board Biological soil amendments can support survival of pathogenic and non-pathogenic Escherichia coli in soils and sporadic transfer to Romaine lettuce Discovery of lactic acid bacteria with high nucleoside degradation and low purine production in tomato sour soup Characterization and release of casein‑sodium alginate embedding phage edible film and the application in controlling of Salmonella contamination in food Electroactivity of Shewanella putrefaciens induced by shrimp matrix: Catalyst for spoilage acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1