Revisiting secondary model features for describing the shoulder and lag parameters of microbial inactivation and growth models

IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY International journal of food microbiology Pub Date : 2025-01-21 DOI:10.1016/j.ijfoodmicro.2025.111078
Alberto Garre , Vasilis Valdramidis , Silvia Guillén
{"title":"Revisiting secondary model features for describing the shoulder and lag parameters of microbial inactivation and growth models","authors":"Alberto Garre ,&nbsp;Vasilis Valdramidis ,&nbsp;Silvia Guillén","doi":"10.1016/j.ijfoodmicro.2025.111078","DOIUrl":null,"url":null,"abstract":"<div><div>The Baranyi and Geeraerd models are two of the most reliable models for the description of, respectively, microbial growth and inactivation. They are defined as a system of differential equations, whose algebraic solution can describe the microbial response during isothermal conditions, especially when combined with suitable secondary models. However, there are still large uncertainties regarding the best functions to use as secondary models for the lag phase duration (<em>λ</em>) and the shoulder length (<em>S</em><sub><em>l</em></sub>).</div><div>In this article, we revisit these models, focusing on the implications related to the assumption of an ideal substance whose dynamics define bacterial adaptation. We demonstrate that their link with the isothermal lag and shoulder leads to unique secondary models for the effect of temperature changes on <em>λ</em> and <em>S</em><sub><em>l</em></sub>. Namely, a log-linear relationship for <em>S</em><sub><em>l</em></sub> and a reverse cuadratic relationship for <em>λ</em> (considering a Ratkowsky model for <em>μ</em>). Furthermore, we observe a coupling between both secondary models (<em>k</em> and <em>S</em><sub><em>l</em></sub> for Geeraerd; <em>λ</em> and <em>μ</em> for Baranyi), reducing the number of unknown model parameters from four to three. Using data from the scientific literature, we illustrate the applicability of these results, being able to improve the robustness of parameter estimates.</div><div>The identification of these links are of great relevance for the field of predictive microbiology, as they resolve the uncertainty regarding the functional form of secondary models. Our results also provide a way to assess the validity of those dynamic hypotheses using data gathered under isothermal conditions, something that was hardly possible using data gathered under dynamic conditions. Although this study is limited to the effect of temperature, the general approach and methodology are also applicable to other type of secondary models, so this article can be a blueprint for future studies.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"431 ","pages":"Article 111078"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160525000236","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Baranyi and Geeraerd models are two of the most reliable models for the description of, respectively, microbial growth and inactivation. They are defined as a system of differential equations, whose algebraic solution can describe the microbial response during isothermal conditions, especially when combined with suitable secondary models. However, there are still large uncertainties regarding the best functions to use as secondary models for the lag phase duration (λ) and the shoulder length (Sl).
In this article, we revisit these models, focusing on the implications related to the assumption of an ideal substance whose dynamics define bacterial adaptation. We demonstrate that their link with the isothermal lag and shoulder leads to unique secondary models for the effect of temperature changes on λ and Sl. Namely, a log-linear relationship for Sl and a reverse cuadratic relationship for λ (considering a Ratkowsky model for μ). Furthermore, we observe a coupling between both secondary models (k and Sl for Geeraerd; λ and μ for Baranyi), reducing the number of unknown model parameters from four to three. Using data from the scientific literature, we illustrate the applicability of these results, being able to improve the robustness of parameter estimates.
The identification of these links are of great relevance for the field of predictive microbiology, as they resolve the uncertainty regarding the functional form of secondary models. Our results also provide a way to assess the validity of those dynamic hypotheses using data gathered under isothermal conditions, something that was hardly possible using data gathered under dynamic conditions. Although this study is limited to the effect of temperature, the general approach and methodology are also applicable to other type of secondary models, so this article can be a blueprint for future studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of food microbiology
International journal of food microbiology 工程技术-食品科技
CiteScore
10.40
自引率
5.60%
发文量
322
审稿时长
65 days
期刊介绍: The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.
期刊最新文献
Editorial Board Biological soil amendments can support survival of pathogenic and non-pathogenic Escherichia coli in soils and sporadic transfer to Romaine lettuce Discovery of lactic acid bacteria with high nucleoside degradation and low purine production in tomato sour soup Characterization and release of casein‑sodium alginate embedding phage edible film and the application in controlling of Salmonella contamination in food Electroactivity of Shewanella putrefaciens induced by shrimp matrix: Catalyst for spoilage acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1