Marine-Derived Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Compounds.

IF 5.6 2区 生物学 International Journal of Molecular Sciences Pub Date : 2025-01-17 DOI:10.3390/ijms26020764
Fabrizia Sepe, Anna Valentino, Loredana Marcolongo, Orsolina Petillo, Raffaele Conte, Sabrina Margarucci, Gianfranco Peluso, Anna Calarco
{"title":"Marine-Derived Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Compounds.","authors":"Fabrizia Sepe, Anna Valentino, Loredana Marcolongo, Orsolina Petillo, Raffaele Conte, Sabrina Margarucci, Gianfranco Peluso, Anna Calarco","doi":"10.3390/ijms26020764","DOIUrl":null,"url":null,"abstract":"<p><p>Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects. Finally, by using naturally sourced polysaccharides in hydrogel formulations, sustainability is promoted by reducing dependence on synthetic polymers, meeting the growing demand for eco-friendly materials. This review analyzes the interaction between marine polysaccharide hydrogels and encapsulating compounds and offers examples of how bioactive molecules can be encapsulated, released, and stabilized.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26020764","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects. Finally, by using naturally sourced polysaccharides in hydrogel formulations, sustainability is promoted by reducing dependence on synthetic polymers, meeting the growing demand for eco-friendly materials. This review analyzes the interaction between marine polysaccharide hydrogels and encapsulating compounds and offers examples of how bioactive molecules can be encapsulated, released, and stabilized.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海洋多糖水凝胶已成为调节体内天然生物活性化合物释放的创新平台。这些水凝胶具有优异的生物相容性、生物可降解性和高吸水性,是封装不同生物活性分子的有效基质。此外,通过改变海洋水凝胶的物理和化学特性,包括交联密度、溶胀行为以及对 pH 值、温度或离子强度等外部刺激的反应,可以严格调节封装生物活性化合物的释放情况,从而最大限度地提高疗效,减少副作用。最后,通过在水凝胶配方中使用天然来源的多糖,可以减少对合成聚合物的依赖,从而促进可持续发展,满足人们对环保材料日益增长的需求。本综述分析了海洋多糖水凝胶与封装化合物之间的相互作用,并举例说明了如何封装、释放和稳定生物活性分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
期刊最新文献
Establishment of iPSC-Derived MSCs Expressing hsa-miR-4662a-5p for Enhanced Immune Modulation in Graft-Versus-Host Disease (GVHD). Curcumin Solubility and Bioactivity Enhancement Through Amorphization with Tryptophan via Supercritical Fluid Technology. One-Step Fabrication of Water-Dispersible Calcium Phosphate Nanoparticles with Immobilized Lactoferrin for Intraoral Disinfection. De Novo DNM1L Pathogenic Variant Associated with Lethal Encephalocardiomyopathy-Case Report and Literature Review. Application of Synthetic Microbial Communities of Kalidium schrenkianum in Enhancing Wheat Salt Stress Tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1