{"title":"A Comprehensive Review of the Diagnostics for Pediatric Tuberculosis Based on Assay Time, Ease of Operation, and Performance.","authors":"Soumya Basu, Subhra Chakraborty","doi":"10.3390/microorganisms13010178","DOIUrl":null,"url":null,"abstract":"<p><p>Pediatric tuberculosis (TB) is still challenged by several diagnostic bottlenecks, imposing a high TB burden in low- and middle-income countries (LMICs). Diagnostic turnaround time (TAT) and ease of operation to suit resource-limited settings are critical aspects that determine early treatment and influence morbidity and mortality. Based on TAT and ease of operation, this article reviews the evolving landscape of TB diagnostics, from traditional methods like microscopy and culture to cutting-edge molecular techniques and biomarker-based approaches. We examined the benefits of efficient rapid results against potential trade-offs in accuracy and clinical utility. The review highlights emerging molecular methods and artificial intelligence-based detection methods, which offer promising improvements in both speed and sensitivity. The review also addresses the challenges of implementing these technologies in resource-limited settings, where most pediatric TB cases occur. Gaps in the existing diagnostic methods, algorithms, and operational costs were also reviewed. Developing optimal diagnostic strategies that balance speed, performance, cost, and feasibility in diverse healthcare settings can provide valuable insights for clinicians, researchers, and policymakers.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767579/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13010178","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pediatric tuberculosis (TB) is still challenged by several diagnostic bottlenecks, imposing a high TB burden in low- and middle-income countries (LMICs). Diagnostic turnaround time (TAT) and ease of operation to suit resource-limited settings are critical aspects that determine early treatment and influence morbidity and mortality. Based on TAT and ease of operation, this article reviews the evolving landscape of TB diagnostics, from traditional methods like microscopy and culture to cutting-edge molecular techniques and biomarker-based approaches. We examined the benefits of efficient rapid results against potential trade-offs in accuracy and clinical utility. The review highlights emerging molecular methods and artificial intelligence-based detection methods, which offer promising improvements in both speed and sensitivity. The review also addresses the challenges of implementing these technologies in resource-limited settings, where most pediatric TB cases occur. Gaps in the existing diagnostic methods, algorithms, and operational costs were also reviewed. Developing optimal diagnostic strategies that balance speed, performance, cost, and feasibility in diverse healthcare settings can provide valuable insights for clinicians, researchers, and policymakers.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.