{"title":"Preamble Design and Noncoherent ToA Estimation for Pulse-Based Wireless Networks-on-Chip Communications in the Terahertz Band.","authors":"Pankaj Singh, Sung-Yoon Jung","doi":"10.3390/mi16010070","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for high-speed data transfer and ultralow latency in wireless networks-on-chips (WiNoC) has spurred exploration into innovative communication paradigms. Recent advancements highlight the potential of the terahertz (THz) band, a largely untapped frequency range, for enabling ultrafast tera-bit-per-second links in chip multiprocessors. However, the ultrashort duration of THz pulses, often in the femtosecond range, makes synchronization a critical challenge, as even minor timing errors can cause significant data loss. This study introduces a preamble-aided noncoherent synchronization scheme for time-of-arrival (ToA) estimation in pulse-based WiNoC communication operating in the THz band (0.02-0.8 THz). The scheme transmits the preamble, a known sequence of THz pulses, at the beginning of each symbol, allowing the energy-detection receiver to collect and analyze the energy of the preamble across multiple integrators. The integrator with maximum energy output is then used to estimate the symbol's ToA. A preamble design based on maximum pulse energy constraints is also presented. Performance evaluations demonstrate a synchronization probability exceeding 0.98 for distances under 10 mm at a signal-to-noise ratio of 20 dB, with a normalized mean squared error below 10-2. This scheme enhances synchronization reliability, supporting energy-efficient, high-performance WiNoCs for future multicore systems.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767894/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010070","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The growing demand for high-speed data transfer and ultralow latency in wireless networks-on-chips (WiNoC) has spurred exploration into innovative communication paradigms. Recent advancements highlight the potential of the terahertz (THz) band, a largely untapped frequency range, for enabling ultrafast tera-bit-per-second links in chip multiprocessors. However, the ultrashort duration of THz pulses, often in the femtosecond range, makes synchronization a critical challenge, as even minor timing errors can cause significant data loss. This study introduces a preamble-aided noncoherent synchronization scheme for time-of-arrival (ToA) estimation in pulse-based WiNoC communication operating in the THz band (0.02-0.8 THz). The scheme transmits the preamble, a known sequence of THz pulses, at the beginning of each symbol, allowing the energy-detection receiver to collect and analyze the energy of the preamble across multiple integrators. The integrator with maximum energy output is then used to estimate the symbol's ToA. A preamble design based on maximum pulse energy constraints is also presented. Performance evaluations demonstrate a synchronization probability exceeding 0.98 for distances under 10 mm at a signal-to-noise ratio of 20 dB, with a normalized mean squared error below 10-2. This scheme enhances synchronization reliability, supporting energy-efficient, high-performance WiNoCs for future multicore systems.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.