Anti-Methanogenic Potential of Seaweeds and Impact on Feed Fermentation and Rumen Microbiome In Vitro.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY Microorganisms Pub Date : 2025-01-09 DOI:10.3390/microorganisms13010123
Pradeep Kumar Malik, Atul Purshottam Kolte, Shraddha Trivedi, Govindan Tamilmani, Archit Mohapatra, Shalini Vaswani, Johnson Belevendran, Artabandhu Sahoo, Achamveetil Gopalakrishnan, Raghavendra Bhatta
{"title":"Anti-Methanogenic Potential of Seaweeds and Impact on Feed Fermentation and Rumen Microbiome In Vitro.","authors":"Pradeep Kumar Malik, Atul Purshottam Kolte, Shraddha Trivedi, Govindan Tamilmani, Archit Mohapatra, Shalini Vaswani, Johnson Belevendran, Artabandhu Sahoo, Achamveetil Gopalakrishnan, Raghavendra Bhatta","doi":"10.3390/microorganisms13010123","DOIUrl":null,"url":null,"abstract":"<p><p>A series of in vitro studies were conducted to explore the anti-methanogenic potential of five seaweeds collected from the Indian sea and to optimize the level(s) of incorporation of the most promising seaweed(s) into a straw and concentrate diet to achieve a significant reduction in methane (CH<sub>4</sub>) production without disturbing rumen fermentation characteristics. A chemical composition analysis revealed a notable ash content varying between 55 and 70% in seaweeds. The crude protein content was highly variable and ranged between 3.25 and 15.3% of dry matter. Seaweeds contained appreciable concentrations of tannins and saponins. Among the seaweeds, <i>Spyridia filamentosa</i> exhibited significantly higher CH<sub>4</sub> production, whereas the percentage of CH<sub>4</sub> in total gas was significantly lower in the cases of <i>Kappaphycus alvarezii</i> and <i>Sargassum wightii</i>. The ranking of seaweeds in terms of CH<sub>4</sub> production (mL/g OM) is as follows: <i>Sargassum wightii</i> < <i>Kappaphycus alvarezii</i> < <i>Acanthophora specifera</i> < <i>Padina gymnospora</i> < <i>Spyridia filamentosa</i>. A remarkable decrease of 31-42% in CH<sub>4</sub> production was recorded with the incremental inclusion of <i>Kappaphycus alvarezii</i> at levels of 3-5% of the dry matter in the diet. The addition of <i>Sargassum wightii</i> led to a significant decrease of 36-48% in CH<sub>4</sub> emissions when incorporated at levels of 4-5% of dry matter, respectively. The findings of this study revealed a significant decrease in the numbers of total protozoa and <i>Entodinomorphs</i>, coupled with increasing abundances of sulfate-reducing microbes and minor methanogens. Metagenome data revealed that irrespective of the seaweed and treatment, the predominant microbial phyla included Bacteroidota, Bacillota, Pseudomonadota, Actinomycetota, Fibrobacterota, and Euryarchaeota. The prevalence of <i>Methanobrevibacter</i> was similar across treatments, constituting the majority (~79%) of the archaeal community. The results also demonstrated that the supplementation of <i>Kappaphycus alvarezii</i> and <i>Sargassum wightii</i> did not alter the feed fermentation pattern, and therefore, the reduction in CH<sub>4</sub> production in the present study could not be attributed to it. Animal studies are warranted to validate the extent of reduction in CH<sub>4</sub> production and the key processes involved by supplementation with <i>Kappaphycus alvarezii</i> and <i>Sargassum wightii</i> at the recommended levels.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13010123","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A series of in vitro studies were conducted to explore the anti-methanogenic potential of five seaweeds collected from the Indian sea and to optimize the level(s) of incorporation of the most promising seaweed(s) into a straw and concentrate diet to achieve a significant reduction in methane (CH4) production without disturbing rumen fermentation characteristics. A chemical composition analysis revealed a notable ash content varying between 55 and 70% in seaweeds. The crude protein content was highly variable and ranged between 3.25 and 15.3% of dry matter. Seaweeds contained appreciable concentrations of tannins and saponins. Among the seaweeds, Spyridia filamentosa exhibited significantly higher CH4 production, whereas the percentage of CH4 in total gas was significantly lower in the cases of Kappaphycus alvarezii and Sargassum wightii. The ranking of seaweeds in terms of CH4 production (mL/g OM) is as follows: Sargassum wightii < Kappaphycus alvarezii < Acanthophora specifera < Padina gymnospora < Spyridia filamentosa. A remarkable decrease of 31-42% in CH4 production was recorded with the incremental inclusion of Kappaphycus alvarezii at levels of 3-5% of the dry matter in the diet. The addition of Sargassum wightii led to a significant decrease of 36-48% in CH4 emissions when incorporated at levels of 4-5% of dry matter, respectively. The findings of this study revealed a significant decrease in the numbers of total protozoa and Entodinomorphs, coupled with increasing abundances of sulfate-reducing microbes and minor methanogens. Metagenome data revealed that irrespective of the seaweed and treatment, the predominant microbial phyla included Bacteroidota, Bacillota, Pseudomonadota, Actinomycetota, Fibrobacterota, and Euryarchaeota. The prevalence of Methanobrevibacter was similar across treatments, constituting the majority (~79%) of the archaeal community. The results also demonstrated that the supplementation of Kappaphycus alvarezii and Sargassum wightii did not alter the feed fermentation pattern, and therefore, the reduction in CH4 production in the present study could not be attributed to it. Animal studies are warranted to validate the extent of reduction in CH4 production and the key processes involved by supplementation with Kappaphycus alvarezii and Sargassum wightii at the recommended levels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
NupR Is Involved in the Control of PlcR: A Pleiotropic Regulator of Extracellular Virulence Factors. Anti-Tick-Bourne Encephalitis IgM Intrathecal Synthesis as a Prediction Marker in Tick-Borne Encephalitis Patients. Differences in Biogeographic Patterns and Mechanisms of Assembly in Estuarine Bacterial and Protist Communities. Antibacterial Potential of Crude Extracts from Cylindrospermum alatosporum NR125682 and Loriellopsis cavernicola NR117881. Prevalence and Antibiotic Resistance of Escherichia coli Isolated from Raw Cow's Milk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1