Binoop Mohan, Chandrima Karthik, Doni Thingujam, Karolina M Pajerowska-Mukhtar, Vinoy Thomas, M Shahid Mukhtar
{"title":"Plasma Optimization as a Novel Tool to Explore Plant-Microbe Interactions in Climate Smart Agriculture.","authors":"Binoop Mohan, Chandrima Karthik, Doni Thingujam, Karolina M Pajerowska-Mukhtar, Vinoy Thomas, M Shahid Mukhtar","doi":"10.3390/microorganisms13010146","DOIUrl":null,"url":null,"abstract":"<p><p>Plasma treatment has emerged as a promising tool for manipulating plant microbiomes and metabolites. This review explores the diverse applications and effects of plasma on these biological systems. It is hypothesized that plasma treatment will not induce substantial changes in the composition of plant microbiomes or the concentration of plant metabolites. We delve into the mechanisms by which plasma can regulate microbial communities, enhance antimicrobial activity, and recruit beneficial microbes to mitigate stress. Furthermore, we discuss the optimization of plasma parameters for effective microbiome interaction and the role of plasmids in plant-microbe interactions. By characterizing plasmidome responses to plasma exposure and investigating transcriptional and metabolomic shifts, we provide insights into the potential of plasma as a tool for engineering beneficial plant-microbe interactions. The review presented herein demonstrates that plasma treatment induces substantial changes in both microbial community composition and metabolite levels, thereby refuting our initial hypothesis. Finally, we integrate plasmidome, transcriptome, and metabolome data to develop a comprehensive understanding of plasma's effects on plant biology and explore future perspectives for agricultural applications.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13010146","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma treatment has emerged as a promising tool for manipulating plant microbiomes and metabolites. This review explores the diverse applications and effects of plasma on these biological systems. It is hypothesized that plasma treatment will not induce substantial changes in the composition of plant microbiomes or the concentration of plant metabolites. We delve into the mechanisms by which plasma can regulate microbial communities, enhance antimicrobial activity, and recruit beneficial microbes to mitigate stress. Furthermore, we discuss the optimization of plasma parameters for effective microbiome interaction and the role of plasmids in plant-microbe interactions. By characterizing plasmidome responses to plasma exposure and investigating transcriptional and metabolomic shifts, we provide insights into the potential of plasma as a tool for engineering beneficial plant-microbe interactions. The review presented herein demonstrates that plasma treatment induces substantial changes in both microbial community composition and metabolite levels, thereby refuting our initial hypothesis. Finally, we integrate plasmidome, transcriptome, and metabolome data to develop a comprehensive understanding of plasma's effects on plant biology and explore future perspectives for agricultural applications.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.